Neutrinos and Cosmic rays at the Highest Energies

Charles Timmermans and Sijbrand de Jong

Charged Cosmic Rays – The Basics

State-of-the-art: **FD** Energy, direction & particle type

 X_{max} using fluorescence light $\sigma(X_{max}) = 20 \text{ g/cm}^2$ The FD measures the "visible" energy, ie energy converted in EM particles in the atmosphere.

The "invisible" energy is estimated from simulations

Particle type: X_{max} = proportional to ln(A) The fluctuations in X_{max} provide an additional handle

"Invisible Energy"

Energy & direction 100% duty cycle

Auger Upgrade – Radio Detection

Charged Cosmic Rays – the Energy Spectrum $\log_{10}(E/eV)$

The energy spectrum is not simple! More data required an elaborate description of the end of the spectrum.

> PoS(ICRC2019),450(2019) 4

Charged Cosmic Rays – The Composition

Charged Cosmic Rays – The Composition

Charged Cosmic Rays – The Composition

Note that in 2016 evidence was published that the composition is mixed in the range 18.5<lg(E)<19.0. This is evidence in which the muon content of showers is used.

QGSJet II-04 simulations, 10 EeV Proton-Air 1 km from shower core

10

$$z = \frac{\ln(N_{\mu}^{\text{det}}) - \ln(N_{\mu}_{p}^{\text{det}})}{\ln(N_{\mu}_{\text{Fe}}^{\text{det}}) - \ln(N_{\mu}_{p}^{\text{det}})},$$

Different experiments, very different methods and a very consistent picture. Deviations start at an energy of about 10¹⁶ eV

Another way to look at the muon deficit is a look at the amount of invisible energy. Auger uses a data driven approach, which depends on the number of muons, to estimate this

Neutrinos - Auger

"normal" inclined shower: only muons left

neutrino-induced shower: young EM component (broad signals in tanks)

tau decay from Earth-skimming ν_{τ} : dense target, but only one flavor

Diffuse Neutrinos - Auger

Neutrino Model	Expected number	Probability of
(Diffuse flux)	of ν events	observing 0
Cosmogenic		
(Kampert et al. [61])		
proton, FRII	$\sim~5.9$	$\sim~2.7 imes10^{-3}$
proton, SFR	~ 1.4	$\sim~0.25$
iron, FRII	$\sim~0.4$	$\sim~0.67$
(Aloisio et al. [62])		
proton, SFR	$\sim~2.3$	$\sim~0.10$
(Ahlers et al. [60])		
proton, $E_{\min} = 10^{19} \text{eV}$	$\sim~4.6$	$\sim1.0 imes10^{-2}$
proton, $E_{\min} = 10^{17.5} \mathrm{eV}$	~2.4	$\sim 9.0 imes 10^{-2}$
(Kotera et al. [20])		
p or mixed, SFR & GRB	$\sim~0.8{-}2.0$	$\sim~0.450.13$
Astrophysical		
(Murase et al. [69])		
Radio-loud AGN	$\sim~2.9$	$\sim5.5 imes10^{-2}$
(Fang et al./ [70])		
$Pulsars - SFR^{20}$	~ 1.5	~ 0.22

Note: Auger is mostly sensitive to Tau-neutrinos Expected number of neutrinos depends on the CR composition

Point Source Neutrinos - Auger

Note that there is a big difference between transient sources (you have to be very lucky to be visible) and continuous sources

Point Source Neutrinos - Auger

Limits on steady sources, example: CEN-A including the IceCube and ANTARES limits

Point Source Neutrinos - Auger

Examples of transient sources: Follow up on GW events and Blazar TXS 0506-056. In no case were UHE neutrinos observed.

PoS(ICRC2019),415(2019)

17

Neutrinos - GRAND

Focus: Tau neutrinos

Similar to Auger, also sensitivity to other neutrino types

We will measure the energy of the air shower induced by the Tau lepton (to be more precise: the EM part thereof)

Difference with Auger:

Auger infers this energy from the particle footprint of the shower. The addition of Auger RD improves this situation drastically.

Neutrinos - GRAND

GRAND is not going to be there tomorrow.

There is an aggressive timeline in which GRAND is completed in about 15 years.

However: Physics (CR and neutrino) will start in initial stages already.

	GRANDProto300			
	GRANDProto3	5	GRAND10k	GRAND200k
1	2018	2020	2025	203X
Goals	standalone radio array: test efficiency & background rejection	standalone radio array of very inclined showers $(\theta_z > 70^\circ)$ from cosmic rays (>10 ^{16.5} eV) + ground array to do UHECR astro/hadronic physics	first GRAND subarray, sensitivity comparable to ARA/ARIANNA on similar time scale, allowing discovery of EeV neutrinos for optimistic fluxes	first neutrino detection at 10 ¹⁸ eV and/or neutrino astronomy!
Setup	35 radio antennas 21 scintillators	 300 HorizonAntennas over 300 km² Fast DAQ (AERA+ GRANDproto35 analog stage) Solar panels + WiFi data transfer Ground array (à la HAWC/Auger) 	DAQ with discrete elements, but mature design for trigger, data transfer, consumption	200,000 antennas over 200,000 km², ~ 20 hotspots of 10k antennas, possibly in different continents Industrial scale allows to cut down costs: 500€/unit → 200M€ in total
Budget & stage	160k€, fully funded by NAOC+IHEP, deployment ongoing @ Ulastai	1.3 M€ to be deployed in 2020	1500€ / detection unit	

Neutrinos - GRAND

Sci.China Phys.Mech.Astron. 53 (2020)

Point Source Neutrinos - GRAND

The additional sensitivity can greatly help for individual transient events, eg TXS 0506+056

Similar for stacking analyses of GW events (certainly in combination with ET and/or CE)

Sci.China Phys.Mech.Astron. <u>6</u>3 (2020)

Fundamental neutrino properties

5/15/20

Figure 4: Observatory requirements to test fundamental physics with cosmic neutrinos.

ArXiv 1903.04333

Astro 2020 white paper

 10^{9}

Center-of-mass energy \sqrt{s} [GeV]

 10^{5}

FCC

GZK ν

 10^{10}

 10^{11}

BSM Searches with Neutrinos

There are nice compilations of different BSM effects, however we could use guidance into what observables we need to construct in order to perform meaningful tests.

GRAND Fundamental Parameters

- Angular Resolution <0.05 degrees
- X_{MAX} 20-40 g/cm²
- Shower Energy ~15%
- Neutrinos sensitivity 4 10⁻¹⁰ GeV cm⁻² s⁻¹ sr⁻¹
- Fully efficient for UHECR and gamma rays above 10¹⁰ GeV for zenith angles beyond 65°
- What aspect to improve would be worth investing in from a theoretical perspective?

Wish list from an experimentalist point of view

- Theoretical understanding of the muon deficit.
 - What parameters could help theoretical understanding of this phenomenon?
- MC neutrino interaction cross section
 - What is included (eg coherent neutrino-nucleus interaction)
 - What about new physics effects and how to observe this?
- Neutrino mixing at the highest energies
 - Sensitivity to BSM, LIV
- Possible effects of LIV in different models of space-time
- Dark matter
 - Heavy dark matter annihilation
 - Neutrino-Dark matter interactions in halo galaxy/ other galaxies
- UHE gamma rays
 - Not discussed at all, but extremely interesting physics (LPM effect, ..)