Theory Meets Experiment Seminar 15/05/2020

Alfonso Garcia

Nik hef

What is a neutrino telescope?

• Neutrinos are very difficult to catch

- To get a few interactions:
 - Enormous volumes.
 - Intense flux.

• Underwater Cerenkov detectors

- Solid performance
- For more than a decade, IceCube and ANTARES have been taking data.
- Valuable for astroparticle physics.
- ... but also for particle physics!

How does it work?

- Energetic particles crossing the water produce Cerenkov light.
 - Photons collected with photon multipliers (PMTs).
 - Light pattern allows us to inferred the energy and direction of incoming particles.

Why underwater?

- Atmospheric muons are constantly bombarding the detector.
 - The deeper you go, the less muons you have.
- Golden channels:
 - TRACK coming horizontal.
 - TRACK coming from bottom.
 - Contained SHOWER.

What physics can we do?

What physics can we do?

What physics can we do?

•1TeV-1EeV Tens/year

KM3Ne

Neutrino oscillation E ~1GeV-100 Millions y

How does cross section affect?

 $N(E,\cos\theta) = \phi_{source}(E,\cos\theta) \otimes e^{N_A p_L^{earth}(\cos\theta)\sigma(E)} \otimes N_A V_{det} \rho \sigma(E)$

- Contained showers in IceCube:
 - 60 events in 7.5 years (E_{dep} >60TeV).

Can cross section be measured?

- Assuming you know well the Earth density:
 - Fit overall normalization of the CC cross section (assuming CC/NC is fixed).

Implications:

- Cross section plays a key role in many studies:
 - Diffuse analyses.
 - What happen with HESE and Tracks?

Implications:

- Cross section plays a key role in many studies:
 - ANITA event (up-going nutau with $E \sim 0.5 \times 10^9 \text{GeV}$).
 - IceCube should have seen the secondary flux.

Our goal:

- Statistic still main limiting factor.
 - KM3NeT, Baykal and IceCube-Gen2 will reduce this uncertainty.
- So far, simplistic approach for cross section treatment.
 - Model
 - CMS-2011: SF(NLO) x PDF(HERAPDF15NLO)
 - Uncertainty:
 - Overall normalisation (sometimes?).
- Aim to understand better the impact of cross sections:
 - New models
 - BGR-2018: SF(NLO) x PDF(NNPDF31_LHCb)
 - Uncertainties:
 - PDF (both in normalisation and differential cross section).
 - Nuclear effects.
 - Sub-leading processes (Rhorry, PRD2019).

https://github.com/pochoarus/GENIE-HEDIS

*GENIE is widely used in long baseline experiments to simulate neutrino interactions

10

Results:

- Most relevant messages:
 - ~10% difference depending on cross section model.

Results:

• Most relevant messages:

- ~10% difference depending on cross section model.
- 5-10% enhancement due to sub-leading processes.

Results:

• Most relevant messages:

- ~10% difference depending on cross section model.
- 5-10% enhancement due to sub-leading processes.
- 5(20)% uncertainty due to nucleon (nuclei) PDFs.

https://github.com/pochoarus/NuPropEarth

- Open source software to propagate neutrinos through Earth.
 - Used to understand cross section effects in Earth absorption.

Conclusions:

- Neutrino telescopes are opening a new era to study the universe.
- Test SM with these experiments -> precise predictions.
- The most detailed study of cross section implications has been done at NIKHEF.
 - State of the art DIS model.
 - Effect of sub-leading channels.
 - Consistent study of PDFs uncertainties.

Future:

- What about hadrons?
 - Hadronization is extremely simplistic (parton model). Help!!!
 - How do we propagate heavy hadrons?