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• For some phenomenological processes, the bottleneck in the computation of the amplitudes 

and cross-section is the evaluation of the master integrals

• One example, is production of the Higgs boson @ LHC via gluon-gluon fusion

• The Higgs particle does not couple directly to gluons: Interaction is mediated by a heavy quark 

loop, so that NLO @ 2-loop

• To this date, no NLO computation is available of the whole 𝑝𝑇-spectrum, including quark-mass 

effects for all quark flavors

• An NLO computation including the top-quark mass but neglecting bottom-quark mass has been 

performed using sector decomposition for the integrals

• Various computations have also been done in HEFT (some up to 𝑁3LO) 

Introduction

[Jones, Kerner, Luisoni, 2018]
e.g. [Chen, Gehrmann, 
Glover, Jaquier, 2016]
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• Amplitude computation:

• 𝒪(300) Feynman diagrams

• Dirac algebra ⇒ 𝒪(20000) scalar diagrams

• The diagrams fit into 7 topologies. 

• Non-planar families:

F:                                                      G:

Introduction [Bonciani et al, 1609.06685]

[Bonciani et al, 1907.13156] [Frellesvig et al, 1911.06308]
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Family F
Master integrals

• IBP-reduction:

• 73 master integrals

• Default FIRE basis: 𝒪(1 GB)

• More suitable (pre-

canonical) basis: 𝒪(100 MB)

• Possible using either FIRE or 

KIRA

Elliptic sectors

Fig: Master integrals with numbering.
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Family F

• There are two elliptic sectors. Their associated maximal cuts are:
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Family G
Master integrals

• IBP-reduction:

• 84 master integrals

• Default FIRE basis: 𝒪(1 GB)

• More suitable (pre-

canonical) basis: 𝒪(100 MB)

• Possible using either FIRE or 

KIRA

Elliptic sectors
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The method of differential equations
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• Partial derivatives of Feynman integrals are combinations of Feynman integrals 

within the same family

• Thus, given a family of master integrals Ԧ𝑓, and using IBP-reduction we may 

write:

• Properties of the differential equations:

Where 𝚪 is diagonal matrix containing the mass dimensions

Basic notions

[Kotikov, 1991], [Remiddi, 1997]
[Gehrmann, Remiddi, 2000]
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• Things simplify considerable in a so-called canonical basis

• Let’s take a look at what happens under a change of basis

• Let                  . Then we have: 

• The canonical basis conjecture claims that

• And that for families expressible in terms of multiple polylogarithms we have:

Canonical basis

[Henn,  2013]
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• The formal solution can be given in terms of Chen’s iterated integrals: 

• The symbol of the integrals is given by:

• The iterated integrals may yield MPL’s, iterated integrals of Eisenstein series / 

modular forms, … 

Canonical basis
[Chen, 1977]

[For non-polylogarithmic examples, see works Adams & Weinzierl, and also 1907.01251]
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• Note that even when

the iterated integrals might not be expressible in terms of MPLs! (Or at least 

known how to.)

• This happens when there are multiple non-simultaneously rationalizable square 

roots. In that case it may not be manifestly possible to obtain the form:

• But sometimes an ansatz-based approach works

Canonical basis
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• Note that it is not necessary to express the integrals in terms of multiple 

polylogarithms, even when possible.

• If we expand

where 𝑟 is integer or half-integer, then all integrations can be performed 

analytically. This is essentially the basis of the series expansion methods central 

in this talk.

• There is more to consider: radius of convergence, analytic continuation, non-

canonical bases. But let’s not get ahead of ourselves!

Canonical basis
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• Many publicly available algorithms (Epsilon, Fuchsia, Canonica, ..)

• Canonical basis can often be computed “manually”

• First find a “pre-canonical” basis:

• Find a period matrix for fixed integer dimension:

• Then note:

• If we work on the maximal cut of a given sector (i.e. modulo its 

subtopologies), then 𝑷 can be directly derived from its maximal cuts, which 

always solve the homogeneous part of the differential equations.

Finding the canonical basis
[Lee, 1411.0911]

[Prausa, 1701.00725]
[Meyer, 1705.06252]

[Gituliar, Magerya, 1701.04269]
[Dlapa, Henn, Yan, 2002.02340]
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• Using the previous equations, the diagonal blocks can be put in canonical 

form. By systematically shifting out terms from sub-topologies, we may also 

make the full system canonical.

• For example, suppose that the (𝑖, 𝑗)-th entry of the differential equation matrix 

has the form R + 𝜖 𝑆. Then, shift, 𝐵𝑖 → 𝐵𝑖 + 𝛼 … 𝐵𝑗 , where 𝛼 depends on the 

external scales. This returns a differential equation for 𝛼 … , which may be 

solved to put the 𝜖0 term to zero. Repeating this leads to:

Finding the canonical basis

[Gehrmann, von Manteuffel, Tancredi, 
Weihs, 1404.4853]
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Finding the canonical basis
• The result may end up being quite complicated! For example, for family “F” of 

the Higgs + jet integrals, we found:

• In particular, the first 65 integrals can be 

written in canonical 𝑑log-form, while the 

remaining integrals are in elliptic sectors
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• Note, I conveniently wrote everything in terms total differentials. But how do we 

actually find      , such that:                         ?

• For this we can let:

• should not depend on the variables 𝑠𝑗 , with 𝑗 < 𝑖, and we can plug in numbers 

for those to easy the integration

Finding the canonical basis
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• Generate an ansatz of basis functions, in the manner of Duhr-Gangl-Rhodes:

• Require                                   for each Li2 𝑥

• Furthermore, we require −∞ < 𝑥 ≤ 1, so not to cross branch cuts of Li2 𝑥

• Then, we match the ansatz at the symbol level:

Analytic integration (Family F)

[Duhr, Gangl, Rhodes, 1110.0458]
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• For example, 𝐵65 at weight 2, in region ℛ is given by:

Analytic integration of Family F
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• Weight 3 can be written as a one-fold integral:

• For weight 4, use an IBP-identity:

Expressions for weight 3 and 4
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Boundary conditions

Introduction    Differential equations   Boundary conditions    Series expansions    Results    Conclusion   



Boundary conditions
• To solve a system of differential equations, we need to compute boundary conditions at 

some suitable kinematic point or limit

• It is convenient to take a point where most of the external scales vanish, and where the 

Feynman integrals will simplify considerably

• However, we can’t plug singular kinematic point into the Feynman parametrization. For 

example:

• In the limit 𝑚2 = 𝑥, with 𝑥 ↓ 0 we have at order 𝜖0:
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Boundary conditions

• Now, suppose we had started directly in the massless limit. We’d find:

• The kinematic singularity has been transformed into a dimensionally regulated pole! We 

therefore can’t use the above expression to fix boundary conditions for the generic case.

• So, how do we obtain boundary conditions without computing the generic mass 

configuration integral first? – defeating the purpose of choosing a simple boundary point
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Boundary conditions
• The solution is to use the method of expansions by regions.

• There is a particularly simple formulation in the parametric representation, 

which is implemented in the publicly available Mathematica package asy.m

• Recall the Feynman parametrization:

• Where,                                                                             

• Cheng-Wu:

[See works by Beneke and Smirov]

See e.g. [Jantzen, Smirnov, Smirnov, 1206.0546]
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Expansion by regions

• Suppose we are interested in a kinematic limit 

• Then there exists a set of regions {𝑅𝑖},  where                                         is a vector 

of rational numbers.  

• For each region 𝑅𝑖 we consider the Feynman parametrized integral with the 

rescaling:

• The asymptotic limit is then given by summing over the contributions for each 

region.
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Expansion by regions
• Let’s have another look at the bubble. We have the Feynman parametrization:

• We feed asy.m the 𝒰 and ℱ polynomials, and obtain the regions:

• Leading to:

• For the purpose of computing boundary conditions, we often only need the leading 

term in the expansion in the line parameter
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Expansion by regions
• Therefore we obtain:

• Although we have a sum of terms, it is clear that each piece is simpler than the 

Feynman parametrization for the massive bubble. We may perform the 

integrations and obtain:

• Which agrees with the result we found before!
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Boundary conditions of family F
• Note that the method is not restricted to simple integrals! Take the following 

master integral from family F:

• And consider the limit

• Asy:

• Scaling: 
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Boundary conditions of family F
• Hence:

• (Terms 𝑥𝑎+𝑏𝜖 with 𝑎 > 0 have been put to zero, since:

𝑥𝑎+𝑏𝜖 = 𝑥𝑎 + 𝑏 𝑥𝑎 log 𝑥 𝜖 +
1

2
𝑏2𝑥𝑎 log 𝑥 2 𝜖2 +⋯

and, lim
𝑥→0

𝑥𝑎 log 𝑥 → 0 for 𝑎 > 0)

• It remains to compute the leading orders 𝐼1,1,1,1,1,1,1,σ1,𝜎2
2 , 𝑥=0
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Boundary conditions of family F
• We work out the example:

• Symanzik polynomials:

• Cheng-Wu theorem:                                        ,
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Boundary conditions of family F
• Integrating out any of the remaining 3 parameters naively leads to 

hypergeometric

• Homogenize / projectivize the integrand by letting                         for 𝑖 = 1,2,4, by 

including an overall          and a delta function

• Now pick the Cheng-Wu transform                                  :

•
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Boundary conditions of family F
• The remaining integrations can be performed in terms of Γ-functions using:

• The final result is given by:

• In fact, explicit computation shows:

• Hence:
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Boundary conditions of family F
• All boundary conditions for family F:

• Requires computation of numerous integrals:
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Boundary conditions of family F
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Series expansion methods

Introduction    Differential equations    Boundary conditions    Series expansions   Results    Conclusion   



Series expansions of Feynman integrals
• We will follow the series expansion strategy of F. Moriello’s paper [1907.13234], 

which was applied in [1907.13156] (family F) and [1911.06308] (family G), and 

discuss some additional optimizations.

• Main steps:

• May be used to obtain high-precision numerical results, including stable results 

near threshold singularities

• Write down a sequence of line segments to a kinematic point.

• Series expand the differential equations along each segment

• Solve the differential equations in terms of series expansions, 

along each path, and use the result to fix the boundary 

conditions for the next path.
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Series expansions
• Note also the range of previous literature on series expansions. For single scale 

problems, see e.g.:

• For multi-scale problems, series expansions have been considered before in 

special kinematic limits. See e.g.:
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• Canonical basis:

• Consider a contour                             where 𝑝 is the number of external scales.

• Let 

• Then order-by-order in 𝜖 we have:

• Upon series expanding, each integration is of the form:

for                 and                ,

whose primitives have the same form (use integration by parts), e.g.:

Series expansions
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• Suppose we are on a line (segment) with line parameter 𝑥

• Next, suppose that                                       , and that we expand up to order 𝒪(𝑥50).

• We seek to find a maximal positive point 𝑥𝛿 such that:

, where 𝛿 indicates some desired precision of the matrix expansions.

• It’s hard to find 𝑥𝛿 exactly, but we can find an estimate 0 < 𝑥𝛿
′ < 𝑥𝛿 , by rescaling the 

line parameter such that the nearest singularity in the complex plane has distance 

≥ 1 from the origin, and looking at the magnitude of the highest order terms

Basic integration strategy
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• So, we solve the equation                                 to get an estimate for 𝑥𝛿

• Note: we can verify the estimate explicitly, and if it is incorrect decrease 𝑥𝛿

• We chose 𝛿 as a bound on the derivative matrix, and typically the integrated 

Feynman integrals have a slightly lower precision:

• Poles may add up and decrease the order of the expansion 

• The coefficients of the Feynman integrals are generally not monotonically decreasing. For 

example, the coefficients may alternate.

• We can interpret 𝛿 as a rough estimate of the final precision on the segment.

Basic integration strategy
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• We may now evaluate our integrated results at 𝛾(𝑥𝛿), and consider a new line 

segment which is centered at 𝛾(𝑥𝛿), iterating the procedure until we reach the 

desired endpoint.

• However, to cross singularities and branch-cuts, we have to center expansions on 

them directly. We will then obtain series that contains terms such as 𝑥−𝑘 , 

log 𝑥 𝑥𝑘 and 𝑥𝑘/2, capturing the analytic behaviour.

• To estimate how close we can go towards a singularity, we can first expand 

around the singularities and compute the respective 𝑥𝛿 ’s.

Basic integration strategy
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• Using Mobius transformations we may improve the convergence of the 

expansions. For example, consider:

• Then:

• Next, consider the Mobius transformation:                    , so that for 𝑦 ∈ [−1,1], we 

have 𝑥 ∈ [−1/10,1].

• We then have:

• And numerically we find:

Integration strategy improvements
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• Thus, we may improve the integration strategy in the following way:

• Find the singularity whose real part is nearest on the left of the origin

• Find the singularity whose real part is nearest on the right of the origin

• Map these respective singularities to -1, and 1.

• Lastly, we may use (diagonal) Pade approximants to accelerate the convergence of our series. 

These are rational functions, whose series expansion matches the original series. For example:

• Pade approximant 

Integration strategy improvements
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Elliptic sectors of family F
• Now that we understand how to setup up expansions for a canonical basis, 

let’s focus on elliptic (and higher order coupled) sectors. 

• For family F the elliptic 

sectors are given by:
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Elliptic sectors of family F
• The differential equations are:

• The homogeneous matrix has the following schematic form:

• We see that integrals 66,67 and 70,71 are coupled.
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Solving non-canonical systems

• So far, we have only considered canonical systems of differential equations, which 

have no homogeneous components. Next, let us consider a coupled system:

• First we seek to solve the homogeneous system, 

• This may be done by combining the system into a 𝑘-th order differential equation 

for any of the 𝑓𝑖 , and using the Frobenius method.

𝑘 coupled integrals in some sector

Lower order terms, and subtopology terms
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Solving non-canonical systems
• Let                                           and

• Then we have:

• Next, let’s obtain a single differential equation for 𝑔1:

• First let:                          , and

• Then                       and 

• Similarly, consider the 𝑘 + 1 × 𝑘 – matrix                             

and (𝑘 + 1) – vector

• Then:
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Solving non-canonical systems
• Using standard algorithms we may find a vector 𝑐𝑇 in the left null-space of ෩𝑀+.

• Then we have

which defines the differential equation we were looking for:

• According to the Frobenius method, we can always find one solution of the form:

where 𝑟 is a rational number.

• This solution is found by plugging it as an ansatz into                            ,

and solving the resulting linear system order-by-order in 𝑥. 
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Solving non-canonical systems
• The leading order defines a polynomial equation for 𝑟 called the indicial 

equation. In order for our series solution to be valid, we have to let 𝑟 be the 

maximal root of the equation.

• The remaining coefficients 𝑠𝑗 may be solved using a recursion relation.

• Next, how do we find the remaining solutions?

• For convenience, let                          , and let ℎ denote our Frobenius solution.

• Suppose we have another solution written as ℎ × 𝜇. Then: 
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Solving non-canonical systems

• For the coefficient of 𝜇 in the above equation, we have simply:

• Thus, we obtained a differential equation for 𝜕𝑥𝜇 of order 𝑘 − 1! We may again 

find one solution for this differential equation using the Frobenius method.

• We can continue recursively this way, until we reach a differential equation of 

order 1, for which the only solution is given by the Frobenius method.
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Solving non-canonical systems
• Suppose now that we have found 𝑘 solutions for 𝐷1, and consider the Wronskian: 

• Then we have: 

• If we sum over the columns of 𝐺, multiplying them by constants, we obtain the 

most general solution to the homogeneous differential equation

• But, we are interested in the inhomogeneous equation:

• We can solve it using the same multiplicative trick as before. 
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Solving non-canonical systems

• Consider the matrix

• Furthermore, suppose that 𝐹 = 𝐺𝐻, and that:

• Then we find:

where 𝐶 is any constant matrix. In particular we may let

• Then the most general solution to                             is given by: 
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Results
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Results for H+j family F
• Example: We consider a path

which crosses a particle production threshold. Along the path we defined two expansions, 

one centered at 𝑃regular and one at 𝑃singular, which are matched at 𝑃mid:

[1907.13156]
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Plots for family F The real part of the integrals is in blue, the imaginary part is orange.
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• We can also obtain 3-dimensional plots, if we sample enough points. 

Consider the parametrization:

• Which maps the physical regions of 

the top quark and bottom quark

contributions to the unit square:

Results for family G [1911.06308]
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Plots for family G
• These results were sampled from 

10000 points.

• We performed numerous internal 

cross-checks at high precision:
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• We can also compute expansions for highly coupled systems.

• First consider the equal-mass case.

• With                      .

• We consider boundary conditions in the limit                                  ,

which is equivalent to the limit of vanishing mass.  

Results for 4-mass banana graph
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• Asy:

Results for 4-mass banana graph
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• Then we obtain:

• We may compute the expansions using a (soon to be released) Mathematica package:

Results for 4-mass banana graph
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Results for 4-mass banana graph
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• We can also produce plots in the unequal mass case. 

• We choose the basis:

Results for 4-mass banana graph
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• Then we find for 𝑝2 = 200𝑥,𝑚1
2 = 4, 𝑚2

2 = 3,𝑚3
2 = 2,𝑚4

2 = 1

Results for 4-mass banana graph (preliminary)
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Conclusion

• We reviewed the method of differential equations for Feynman integrals

• We discussed how to solve the differential equations in terms of series 

expansions

• We discussed applications of these methods to:

• Non-planar Higgs + jet families F and G

• Beyond-elliptic Feynman integrals
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Thank you for listening!
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