

Positive ionic drift in T2K gas

Preliminary, still some analysis ongoing

Fred Hartjes NIKHEF

> Nikhef/Bonn LepCol meeting February 10, 2020

Setup for measuring positive ion drift

- Ions from the laser beam instantaneously induce charge on drift cathode
- In addition ions leaking through the grid during the avalanche induce charge as well
- Ions move towards the drift cathode, generating an induction current
 - Current terminated at arrival at the drift cathode
- Measurements reliably triggered by laser diode
- On the scope averaged over 32 triggers

Instabilities/ noise from:

- Drift field HV supply
 - => heavy RC filters at input and outlet
 - Outlet filter has time constant of 2.2 s
- LabVIEW communication with HV supplies
 - Interrupted during data taking
- Micro discharges at drift cathode
 - Strong dependence on magnitude drift field
 - Cannot be solved easily
- 50 Hz pickup
 - Shielding testbox
- Laser instability 20 30% rms

Nikhef/Bonn LepCol meeting, February 10, 2020

Setup of the charge signal collection

Simplified electronic circuit

- Values measured with test pulse
 - Through 1 pF and 100 MOhm
- Parasitic capacity of drift cathode, Lemo cable, electronics measured as 89.5 pF
- RC time 10 +/- 0.5 ms
- We get the ideal integrator curve by deconvolution of the measured curve from the RC time constant
 - But for better deconvolution also the voltage change on 1 nF coupling capacitor had to be taken into account

- No gas gain
- Ionizing **exclusively** TMPD (N, N, N', N' Tetramethyl-1,4-phenylendiamin)
 - In the chamber gas as a pollution in the ppb level
- Laser beam at about 30 mm from the drift cathode
- Note the **sharp** bend when the ions are collected by the drift cathode
- Initial drift time 8 ms
 - \sim => velocity ~3.8 m/s
 - But possible tail of slow ions up to 40 ms
 - Phenomenon hard to measure because of instabilities on the charge signal
 - Measurement with blocked laser has been subtracted
- Integrated charge 2.5 3.5 mV across 90 pF => 225
 315 fC
 - => 1.4 2.0 M ions
 - \blacksquare => ~ 40 60 electrons entering each hole

Nikhef/Bonn LepCol meeting, February 10, 2020

Primary ionization by laser

Fred Hartjes

Differentiated deconvolution curve of primary ionization

- Tail of slow ions between 8 and 40 ms may be present
- Note that this is only relevant for the laser measurements

With gas gain ~ 2000

- Gas: T2K
- Primary ionization: about 60 e-/hole
 - Gain may be still proportional
 - To be verified
- Integrated charge: 38 mV across 90 pF
 - => 3.4 pC
 - => 21 M ions
 - Note the soft bend when the ions are collected by the drift cathode
 - > various types of ions are involved
- Bend starting at 12 ms
 - Ending at about 22 ms
- => drift velocity 1.8 3.3 m/s

Vgrid = -340 V

Differentiated curve

- dT = 1 ms
- The sharp bend of the primary ionization is well visible

- A slow ion tail runs until ~ 30 ms
- This corresponds to 3 mV => 0.27 pC or 1.7 M of 21 M ions
 - About 8% of the total charge
- Drift time main phenomenon: 12.5 ms
 - velocity 3.1 m/s
- Drift time slow ions: 12.5 to 30 ms
 - => velocity 1.3 3.1 m/s

Primary ionization subtracted

- Main peak probably is identified as Ar+ arriving at 12 ms
 - Slow ions all collected at ~ 32 ms
- Mobility $0.45 1.1 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$
- Literature: Ar+ in Ar: ~ $1.5 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$
- Mobility has some dependence on the applied field, literature measurements normally done at much higher fields
- CF4 and iC4H10 have higher mobilities (2 2.5 cm²V⁻¹s⁻¹)
 - Expected to be hidden in the rising edge of the Ar+ curve
- The slow ion peak may be caused by a C8Hn+ ion (Coimbra suggestion)

Nature of the peaks

Fred Hartjes

Low drift field: 150 V/cm

- Part of ions passing the grid hole will be still finally collected by the grid
 - => decrease of the originally induced charge

Nikhef/Bonn LepCol meeting, February 10, 2020

11

Fred Hartjes

Ar+ drift velocity vs drift field

- Still to be reanalyzed
 - Curve does not pass X, Y = 0, 0

Ionic mobility vs drift field

- Assuming the meain peak originates from Ar+ ions
- Literature (Ar+ ions in Ar) (Madson, Hornstein 1967, 1951)
- $\sim 1.3 1.5 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$ measured in 20 - 25 kV/cm range

- Slope at used extremely high ionization density (~ 60 e-/hole) vs regular (< 0.1 e-/hole) is within error margin
 - 0.0272 vs 0.0306
 - So not too much **saturation effects**

Increase ion charge with Vgrid

Induced grid current vs grid voltage

Ion leakage vs drift field

Data still have to be corrected for the dependence of the gain on the drift field

Nikhef/Bonn LepCol meeting, February 10, 2020

Conclusions

- Leakage of ions through holes of the grid not very high
 - Assuming gain = 2000 at Vgrid = 340 V => 0.75% is leaking
- Main peak probably originates from **Ar**+
 - Faster peaks of CF4+ and C4Hn are probably hidden in the rising edge
 - But 8% of the ions have an about 3x lower mobility
- Ions of the same type all arrive at the same time at the cathode
 - See the sharp peak of the primary laser ionization
 - But the curve of the avalanche ions has a soft edge
 => several types of ions are involved

Conclusions cntd

- Part of the ions appearing at the hole of the grid are finally captured by the grid
 - This is especially seen at low drift fields
- There is no clear sign of saturation of the gas gain at the very high input rate (40 – 60 e-/hole)
 - Note that for the laser measurements the voltage drop across the protection layer is not too high (very low duty cycle)
 - Grid current ~ 0. 5 nA
- Calibration of the gas gain from the measured grid current and the amount of primary ions still to be done

