Introduction to SMEFT and considerations from theory

Darren Scott

Outline

SMEFT basics

"Considerations" from theory

NLO predictions

Motivation

Absence of direct discovery of new physics at the LHC

Bounds on mass scale associated with new physics pushed much higher

→ Make use of EFT to find deviations

^{*}Only a selection of the available mass limits on new states or phenomena is shown

[†]Small-radius (large-radius) jets are denoted by the letter j (J).

The idea:

If the new physics is heavy then "integrating it out" leads to higher dimensional operators in the Lagrangian - an EFT.

SMEFT is an EFT extension of the SM.

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \mathcal{L}^{(5)} + \mathcal{L}^{(6)} + \mathcal{L}^{(7)} + \dots$$

 $\mathcal{L}^{(d)}$ - contains operators of mass dimension d

Make predictions with $\mathcal{L}_{\mathrm{SMEFT}}$

E.g. top quark production at The LHC, Higgs boson decays,

Prediction =
$$\underset{\text{from } \mathcal{L}_{\text{SM}}}{\text{Prediction}} + \sum_{i} \frac{C_{i}}{\Lambda_{\text{NP}}^{2}} f_{i}(\{p\}, \{x\})$$
SM parameters, kinematics

Make predictions with $\mathcal{L}_{\mathrm{SMEFT}}$

E.g. top quark production at The LHC, Higgs boson decays,

$$\begin{array}{ll} \text{Prediction} = & \text{Prediction} \\ \text{from } \mathcal{L}_{\text{SM}} & + \sum_{i} \frac{C_{i}}{\Lambda_{\text{NP}}^{2}} f_{i}(\{p\}, \{x\}) \\ \text{SM parameters,} \\ \text{kinematics} \end{array}$$

Fit to experimental data

Fit to experimental data

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \mathcal{L}^{(5)} + \mathcal{L}^{(6)} + \mathcal{L}^{(7)} + \dots$$

$$\mathcal{L}^{(d)} = \sum_i \frac{C_i^{[d]}}{\Lambda_{\mathrm{NP}}^{d-4}} Q_i^{[d]}$$
 Scale of `new physics'

 $C_i^{[d]}$ –Wilson coefficient

 $Q_i^{[d]}$ - Operator of mass dimension d

Rules for operators:

- * Built out of only SM fields
- * Respect Lorentz and gauge symmetries

Renormalizable?

Yes, if you work to consistent order in $\Lambda_{\rm NP}$

Dimension-5:

* Gives rise to neutrino mass

$$Q^{[5]} = \left(\overline{\ell^c}\widetilde{H}^*\right) \left(\widetilde{H}^\dagger \ell\right)$$

* Expected to be heavily suppressed

Dimension-6:

Rules specified earlier → thousands of operators

Such a basis will be redundant

Can use field redefinitions to write some operators as linear combinations of others \rightarrow Holds even at loop level!

Choose what to remove → basis choice.

Common (and complete) basis is the WARSAW BASIS

[Buchmuller, Wyler: Nucl.Phys. B268 (1986) 621-653]

[Grzadkowski, Iskrzynski, Misiak, Rosiek: JHEP 1010 (2010) 085]

2499 baryon number conserving operators (considering all possible flavour structures!)

Recently extended up to dim-20

[Marinissen, Rahn, Waalewijn: 2004.09521]

Recently extended up to dim-20

[Marinissen, Rahn, Waalewijn: 2004.09521]

Dimension-6 1 : <i>X</i> ³		$2:H^6$		$3:H^4D^2$			$5: \psi^2 H^3 + \text{h.c.}$					
	$Q_G = f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$		Q_H	$(H^{\dagger}H)^3$	$Q_{H\square}$ $(H^{\dagger}H)\square(H^{\dagger}H)$		$I)\Box(H^{\dagger}H)$	Q_{eH}	$\overline{(H^{\dagger}H)(\overline{l}_{p}e_{r}H)}$			
	$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}_{\mu}^{A\nu}G_{\nu}^{B\rho}G_{\rho}^{C\mu}$			Q_{HD}	$\left(H^{\dagger}D_{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$		Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$			
	Q_W	$\epsilon^{IJK}W^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$			·		Q_{dH}	$(H^\dagger H)(ar q_p d_r H)$				
	$Q_{\widetilde{W}} \mid \epsilon^{IJK} \widetilde{W}_{\mu}^{I u} W_{ u}^{J ho} W_{ ho}^{K\mu}$											
	$\begin{array}{c c} & 4:X^2H^2\\ \hline Q_{HG} & H^\dagger HG^A_{\mu\nu}G^{A\mu\nu}\\ Q_{H\widetilde{G}} & H^\dagger H\widetilde{G}^A_{\mu\nu}G^{A\mu\nu} \end{array}$			$6:\psi^2 X$	H + h.c.		$7:\psi^2H^2D$					
			\overline{Q}	$_{eW} \mid (\overline{l}_p \sigma^\mu$	$^{\iota\nu}e_r)\sigma^I R$	$W^I_{\mu u}$	$Q_{Hl}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{l}_{p}\gamma^{\mu}l_{r})$				
			Q	$O_{eB} \mid (\overline{l}_p a)$	$ar{l}_p \sigma^{\mu u} e_r) H B_{\mu u}$		$Q_{Hl}^{(3)}$	$ (H^{\dagger}i \overleftrightarrow{D}_{\mu}^{I} H)(\bar{l}_{p} \sigma^{I} \gamma^{\mu} l_{r} $				
	Q_{HW}	$H^\dagger H W^I_{\mu u} W^{I \mu u}$	Q	$q_{uG} \mid (\overline{q}_p \sigma^\mu)$	$u^{ u}T^Au_r)I$	$\widetilde{H}G^A_{\mu u}$	Q_{He}	$H^{\dagger}i$	$\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$			
	$Q_{H\widetilde{W}}$	$H^\dagger H \widetilde{W}^I_{\mu u} W^{I \mu u}$	Q	$_{uW} \; \Big \; (ar{q}_p \sigma^\mu$	$u^{\mu}u_{r})\sigma^{I}\widetilde{H}W_{\mu\nu}^{I}$		$Q_{Hq}^{(1)}$	$(H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{q}_p \gamma^\mu q_r)$				
	$Q_{HB} = H^{\dagger} H B_{\mu\nu} B^{\mu}$		Q	$q_{uB} \mid (\bar{q}_p \epsilon$	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$		$Q_{Hq}^{(3)} \qquad (H^{\dagger}i \overleftrightarrow{D}_{\mu}^{I})$		$\overrightarrow{D}_{\mu}^{I}H)(\overline{q}_{p}\sigma^{I}\gamma^{\mu}q_{r})$			
	$Q_{H\widetilde{B}}$	$H^\dagger H\widetilde{B}_{\mu u} B^{\mu u}$	Q	$Q_{dG} \mid (\overline{q}_p \sigma^\mu)$	$^{\mu\nu}T^Ad_r)HG^A_{\mu\nu}$ $^{\mu\nu}d_r)\sigma^IHW^I_{\mu\nu}$		Q_{Hu}	$H^{\dagger}i$	$(\overrightarrow{D}_{\mu}H)(\overline{u}_p\gamma^{\mu}u_r)$			
	Q_{HWB}	$H^{\dagger}\sigma^{I}HW_{\mu u}^{I}B^{\mu u}$	Q	$_{dW} \; \left \; (ar{q}_p \sigma^\mu$			Q_{Hd}	$H^{\dagger}i$	$(\overrightarrow{D}_{\mu}H)(\overline{d}_{p}\gamma^{\mu}d_{r})$			
	$Q_{H\widetilde{W}B}$	$H^\dagger \sigma^I H \widetilde{W}^I_{\mu u} B^{\mu u}$	Q	$q_{dB} \mid (ar{q}_p a)$	$\sigma^{\mu\nu}d_r)H$	$B_{\mu u}$	Q_{Hud} + h.c.	$i(\widetilde{H}^{\dagger})$	$D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$			

Example interaction:

$7:\psi^2H^2D$	
$Q_{Hl}^{(1)} = (H^\dagger i \overleftrightarrow{D}_\mu H) (\overline{l}_p \gamma^\mu l_r)$	
$Q_{Hl}^{(3)} \qquad \qquad (H^{\dagger}i \overleftrightarrow{D}_{\mu}^{I} H)(\overline{l}_{p} \sigma^{I} \gamma^{\mu} l_{r})$	
Q_{He} $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{Hq}^{(1)}$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$ Can give W^{+}	
$Q_{Hq}^{(3)} \qquad \left[(H^{\dagger}i \stackrel{\frown}{D}_{\mu}^{I} H)(\bar{q}_{p} \sigma^{I} \gamma^{\mu} q_{r}) \right]$	
$Q_{Hu} \qquad (H^{\dagger}i \overleftrightarrow{D}_{\mu} H)(\bar{u}_p \gamma^{\mu} u_r)$	$\setminus \overline{d}$
$Q_{Hd} = (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{Hud} + \text{h.c.} \left[i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_p\gamma^{\mu}d_r) \right]$	1.0

Appearance of Wilson coefficients in a given process

1: Directly, though new vertex or modification of an old one

Eg, new vertex:

$$C_{HG}(H^{\dagger}H)G^{a}_{\mu\nu}G^{a\mu\nu}$$

$$C_{dH}(H^{\dagger}H)(\bar{q}Hd)$$

Modification of Yukawa-like interactions

Completely new vertex – not in SM

Appearance of Wilson coefficients in a given process

2: Through through correcting the Higgs kinetic term

Addition of dim-6 operators ruins cannonical normalization of kinetic terms! E.g.

$$C_{HD}(H^\dagger D_\mu H)^* (H^\dagger D^\mu H) \stackrel{\text{After}}{==} \sim C_{HD} \frac{v^2}{4} (\partial_\mu h)^2$$

To restore canonical normalization, write Higgs doublet as:

$$H(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} -\sqrt{2}i\phi^{+}(x) \\ [1 + C_{H,\text{kin.}}]h(x) + i\left[1 - \frac{\hat{v}_{T}^{2}}{4}C_{HD}\right]\phi^{0}(x) + v_{T} \end{pmatrix}$$
$$C_{H,\text{kin}} \equiv \left(C_{H\Box} - \frac{1}{4}C_{HD}\right)\hat{v}_{T}^{2}$$

Appearance of Wilson coefficients in a given process

2: Through through correcting the Higgs kinetic term

Implies C_{HD} , $C_{H\square}$ can show up in any SM like vertex which contains a Higgs field! E.g.

$$\Gamma(h \to b\bar{b}) \sim 2\Gamma_{\rm SM}C_{H\square}$$

$$\mathcal{L} \sim C_{H\square}(H^{\dagger}H)\square(H^{\dagger}H)$$

Appearance of Wilson coefficients in a given process

3: Relations between parameters

Not all parameters are independent. Expressing answer in terms of `input' variables can lead to additional dim-6 contributions.

E.g:
$$\cos \theta_w = \frac{M_W}{M_Z} \left(1 + \frac{v^2}{4} C_{HD} + \frac{s_w^2 v^2}{2c_w} C_{HWB} \right)$$

4: Through running

Running C_i between scales \rightarrow full set of operators mix into each other! (E.g. Important for matching) $\mu \frac{\mathrm{d}C_i}{\mathrm{d}\mu} = \gamma_{ij}C_j$

Appearance of Wilson coefficients in a given process

Higgs decay example

$$\Gamma^{(4,0)} = \frac{N_c m_H m_b^2}{8\pi \hat{v}_T^2}$$

$$\Gamma^{(6,0)} = 2\Gamma^{(4,0)} \left[C_{H\square} - \frac{C_{HD}}{4} \left(1 - \frac{\hat{c}_w^2}{\hat{s}_w^2} \right) + \frac{\hat{c}_w}{\hat{s}_w} C_{HWB} - \frac{\hat{v}_T}{m_b} \frac{C_{bH}}{\sqrt{2}} \right] \hat{v}_T^2$$

From redefinition of Higgs doublet

Replacement of VEV by physical parameters

- Explicit operator contribution
- Replacement of Yukawa terms

Narrow width in the SMEFT

The appearance of new $h\gamma\gamma, hZ\gamma$ tree-level vertices in the SMEFT can lead to problems for the narrow width approximation in [Brivio, Corbett, Trott: JHEP 10 (2019) 056 (1906.06949)]

Naive use of narrow width approximation misses certain contributions:

E.g:

Photon mediated diagrams

Contact interactions

Narrow width in the SMEFT

[Brivio, Corbett, Trott: JHEP 10 (2019) 056 (1906.06949)]

Contribution of $h\gamma\gamma, hZ\gamma$ mediated process compared to WW+ZZ contributions

$$\Gamma^{\text{SMEFT}} = \Gamma^{\text{SM}} \left[1 + \sum_{i} a_{i} C_{i} \right]$$

Example contributions to a_i from given process

$h \to S$	$ ilde{C}_{HW}$			$ ilde{C}_{HB}$			$ ilde{C}_{HWB}$		
	$Z\gamma$	$\gamma\gamma$	WW, ZZ	$Z\gamma$	$\gamma\gamma$	WW, ZZ	$Z\gamma$	$\gamma\gamma$	WW, ZZ
$\ell_p^+\ell_p^-\ell_r^+\ell_r^-$	1.04	-0.009	-0.78	-1.04	-0.03	-0.22	-0.70	0.02	0.30
$\ell_p^+\ell_p^-ar{ u}_r u_r$	0.52		-0.78	-0.52		-0.22	-0.35		-0.06
$\bar{u}_p u_p \bar{u}_r u_r$	2.26	-0.04	-0.78	-2.26	-0.15	-0.22	-1.51	0.08	1.13
$ar{d}_p d_p ar{d}_r d_r$	1.53	-0.02	-0.78	-1.53	-0.07	-0.22	-1.02	0.04	0.63
$\bar{u}_p u_p \bar{d}_r d_r$	1.89	-0.03	-0.78	-1.89	-0.10	-0.22	-1.26	0.05	0.88
$\ell_p^+\ell_p^-\bar{u}_{p,r}u_{p,r}$	1.65	-0.02	-0.78	-1.65	-0.07	-0.22	-1.10	0.04	0.71
$\ell_p^+ \ell_p^- \bar{d}_{p,r} d_{p,r}$	1.29	-0.01	-0.78	-1.29	-0.05	-0.22	-0.86	0.02	0.46

Input scheme dependence

Input scheme dependence:

Using different input variables changes the numerical coefficients!

[Brivio, Corbett, Trott: JHEP 10 (2019) 056 (1906.06949)]

$$\{\alpha, M_Z, G_F, M_H\} \qquad \frac{\Gamma_{\text{LO}}^{\text{SMEFT}}}{\Gamma_{\text{LO}}^{\text{SM}}} = 1 + 2.89C_{HWB} + 0.34C_{HD} - 1.38C_{H\ell}^{(3)} + \dots$$

$$\{M_W, M_Z, G_F, M_H\} \qquad \frac{\Gamma_{\text{LO}}^{\text{SMEFT}}}{\Gamma_{\text{LO}}^{\text{SM}}} = 1 + 1.21C_{HWB} - 0.43C_{HD} - 2.32C_{H\ell}^{(3)} + \dots$$

- * Predictions should state which scheme (and renormalization scheme) has been used → not well done in literature so far...
- * Fits should make use of consistent schemes.

Limitations of SMEFT

The SMEFT does not encompass all possibilities for new physics. (Even looking beyond dim-6 operators) → Many CP violating effects come into play only later.

1: New physics must be heavy!

$$\frac{v}{\Lambda_{\mathrm{NP}}} \ll 1$$

2: SMEFT assumes Higgs in $SU(2)_L$ doublet. In some sense, the simplest "broad" extension of the SM.

Gravity: mixing between scalar component of graviton and Higgs

→ Nonlinearities

Broader EFTs available (HEFT)

NLO predictions often necessary to:

- * Meet required precision
- * Give more meaningful theory uncertainties

Unlike SM, not currently automated in SMEFT.

Structure of higher order corrections still under development somewhat.

```
Previously worked on \Gamma^{\mathrm{SMEFT}}(h \to b\bar{b})
```

```
[Gauld, Pecjak, DJS:
JHEP 1605 (2016) 080 &
Phys.Rev. D94 (2016) no.7, 074045]
```

[Cullen, Pecjak, DJS: JHEP 1908 (2019) 173]

Sample diagrams/interactions:

 $-\frac{h}{h} = \frac{h}{h} = \frac{h$

⇒ Don't exist in SM!

Compute width (inverse lifetime)

Leading Order

$$\Gamma^{(6,0)} = 2\Gamma^{(4,0)} \left[\frac{C_{H\square} - \frac{C_{HD}}{4}}{4} \left(1 - \frac{\hat{c}_w^2}{\hat{s}_w^2} \right) + \frac{\hat{c}_w}{\hat{s}_w} C_{HWB} - \frac{\hat{v}_T}{m_b} \frac{C_{bH}}{\sqrt{2}} \right] \hat{v}_T^2$$

Next-to-leading order: $\Gamma^{(6,1)} \sim$ 45 coefficients

Corrections to tree level coefficients:

	SM	C_{HWB}	$C_{H\square}$	C_{bH}	C_{HD}
NLO QCD-QED	18.2%	17.9%	18.2%	18.2%	18.2%
NLO large- m_t	-3.1%	-4.6%	3.2%	3.5%	-9.0%
NLO remainder	-2.2%	-1.9%	-1.2 %	0.6%	-2.0%
NLO correction	12.9%	11.3%	20.2%	22.3%	7.1%

Compute width (inverse lifetime)

Leading Order

$$\Gamma^{(6,0)} = 2\Gamma^{(4,0)} \left[\frac{C_{H\square} - \frac{C_{HD}}{4}}{4} \left(1 - \frac{\hat{c}_w^2}{\hat{s}_w^2} \right) + \frac{\hat{c}_w}{\hat{s}_w} C_{HWB} - \frac{\hat{v}_T}{m_b} \frac{C_{bH}}{\sqrt{2}} \right] \hat{v}_T^2$$

Next-to-leading order: $\Gamma^{(6,1)} \sim$ 45 coefficients

New C_i can appear from loop diagrams with large coefficients

NLO SMEFT calculations have important implications for fitting!

Summary

- * Basics of what the SMEFT is
- * Origin of couplings in processes
- * Use of narrow width in SMEFT not automatic
- * Input scheme dependence important when fitting
- * NLO predictions can be important

Summary

- * Basics of what the SMEFT is
- * Origin of couplings in processes
- * Use of narrow width in SMEFT not automatic
- * Input scheme dependence important when fitting
- * NLO predictions can be important

Thank you for your attention