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Outline

● SMEFT basics

●“Considerations” from theory

● NLO predictions
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The Standard Model Effective Field Theory:
Brief introduction 

Motivation

Absence of direct 
discovery 
of new physics at the LHC

Bounds on mass scale 
associated with new 
physics pushed much 
higher

→ Make use of EFT to
    find deviations
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The Standard Model Effective Field Theory:
Brief introduction 
The idea:
If the new physics is heavy then “integrating it out” leads to higher 
dimensional operators in the Lagrangian - an EFT.

SMEFT is an EFT extension of the SM.

- contains operators of mass dimension d
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Make predictions with             

Prediction = Prediction
from       +

E.g. top quark production at The LHC,
Higgs boson decays, ….

SM parameters, 
kinematics

The Standard Model Effective Field Theory:
Brief introduction 
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Make predictions with             

Prediction = Prediction
from       +

Fit to experimental data

E.g. top quark production at The LHC,
Higgs boson decays, ….

SM parameters, 
kinematics

The Standard Model Effective Field Theory:
Brief introduction 
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Make predictions with             

Prediction = Prediction
from       +

Fit to experimental data

E.g. top quark production at The LHC,
Higgs boson decays, ….

SM parameters, 
kinematics

New physics shows up as

The Standard Model Effective Field Theory:
Brief introduction 
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The Standard Model Effective Field Theory:
Brief introduction 

Scale of
 `new physics’

Operator of mass 
dimension d

–Wilson coefficient–

Rules for operators:
* Built out of only SM fields
* Respect Lorentz and gauge 
symmetries

Renormalizable?

Yes, if you work to consistent order 
in 
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The Standard Model Effective Field Theory:
Brief introduction 

Dimension-5:

* Gives rise to neutrino mass

* Expected to be heavily 
suppressed

Dimension-6:

Rules specified earlier → thousands of operators

Such a basis will be redundant

Can use field redefinitions to write some operators as linear combinations of 
others → Holds even at loop level!

Choose what to remove → basis choice.
Common (and complete) basis is the WARSAW BASIS
[Buchmuller, Wyler: Nucl.Phys. B268 (1986) 621-653]
[Grzadkowski, Iskrzynski, Misiak, Rosiek: JHEP 1010 (2010) 085]

2499 baryon number 
conserving operators 

(considering all possible 
flavour structures!)
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[Henning, Lu, Melia, Murayama: JHEP 1708 (2017) 016]

The Standard Model Effective Field Theory:
Brief introduction 

Recently extended 
up to dim-20

[Marinissen, Rahn, 
Waalewijn: 2004.09521]
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[Henning, Lu, Melia, Murayama: JHEP 1708 (2017) 016]

The Standard Model Effective Field Theory:
Brief introduction 

Recently extended 
up to dim-20

[Marinissen, Rahn, 
Waalewijn: 2004.09521]

Lets stick to dimension-6 in this 
talk...
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The Standard Model Effective Field Theory:
Brief introduction 

+ 25 distinct 4-fermion operators

Dimension-6
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The Standard Model Effective Field Theory:
Brief introduction 

Can give

Example interaction:
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Wilson coefficients in processes
Appearance of Wilson coefficients in a given process

1: Directly, though new vertex or modification of an old one

Eg, new vertex:

Completely new 
vertex – not in SM

Modification of 
Yukawa-like 
interactions
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Wilson coefficients in processes
Appearance of Wilson coefficients in a given process

2: Through through correcting the Higgs kinetic term

Addition of dim-6 operators ruins cannonical normalization of kinetic terms! 
E.g.

After 
EWSB

To restore canonical normalization, write Higgs doublet as:
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Wilson coefficients in processes
Appearance of Wilson coefficients in a given process

2: Through through correcting the Higgs kinetic term

Implies              can show up in any SM like vertex which 
contains a Higgs field! E.g.
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Wilson coefficients in processes
Appearance of Wilson coefficients in a given process

3: Relations between parameters

Not all parameters are independent. Expressing answer in terms 
of `input’ variables can lead to additional dim-6 contributions.

E.g:

4: Through running

Running     between scales → full set of operators mix into 
each other! (E.g. Important for matching)
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Wilson coefficients in processes
Appearance of Wilson coefficients in a given process

Higgs decay example

From redefinition 
of Higgs doublet

Replacement of 
VEV by physical 
parameters

● Explicit operator 
contribution

● Replacement of 
Yukawa terms
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Narrow width in the SMEFT
The appearance of new             tree-level vertices in the SMEFT 
can lead to problems for the narrow width approximation in

[Brivio, Corbett, Trott: JHEP 10 (2019) 056 
(1906.06949)]

Naive use of narrow width approximation misses certain 
contributions:
E.g:
Photon mediated diagrams                        Contact interactions

As well as some other effects (interference W and Z mediated)
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Narrow width in the SMEFT
Contribution of            mediated process compared to        
contributions

Example contributions to     from given process

[Brivio, Corbett, Trott: JHEP 10 (2019) 056 (1906.06949)]
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Input scheme dependence: 

Using different input variables changes the numerical coefficients!

Input scheme dependence

[Brivio, Corbett, Trott: JHEP 10 (2019) 056 (1906.06949)]

* Predictions should state which scheme (and renormalization scheme) 
has been used → not well done in literature so far…

* Fits should make use of consistent schemes.
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The SMEFT does not encompass all possibilities for new physics.
(Even looking beyond dim-6 operators) → Many CP violating effects come into play only later.

1: New physics must be heavy!

2: SMEFT assumes Higgs in            doublet.
In some sense, the simplest “broad” extension of the SM.

Gravity: mixing between scalar component of graviton and Higgs
→ Nonlinearities

Limitations of SMEFT

Broader EFTs available (HEFT)
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NLO predictions from SMEFT
NLO predictions often necessary to:

* Meet required precision
* Give more meaningful theory uncertainties

Unlike SM, not currently automated in SMEFT.

Structure of higher order corrections still under development 
somewhat.

Previously worked on
[Gauld, Pecjak, DJS:
JHEP 1605 (2016) 080 &
Phys.Rev. D94 (2016) no.7, 074045]

[Cullen, Pecjak, DJS: JHEP 1908 (2019) 173]
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Sample diagrams/interactions:

Don’t exist in SM!

NLO predictions from SMEFT
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Compute width (inverse lifetime)

Leading Order 

Next-to-leading order: 45 coefficients

Corrections to tree level coefficients:

NLO predictions from SMEFT



26

Compute width (inverse lifetime)

Leading Order 

Next-to-leading order: 45 coefficients

New      can appear from loop diagrams with large coefficients

NLO SMEFT calculations have important implications for fitting!

NLO predictions from SMEFT
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Summary
* Basics of what the SMEFT is

* Origin of couplings in processes

* Use of narrow width in SMEFT not automatic

* Input scheme dependence important when fitting

* NLO predictions can be important
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Summary
* Basics of what the SMEFT is

* Origin of couplings in processes

* Use of narrow width in SMEFT not automatic

* Input scheme dependence important when fitting

* NLO predictions can be important

Thank you for your attention
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