Measuring neutrino oscillations in ORCA

Lodewijk Nauta KM3NeT junior group meeting 2020-01-30

Preliminary

- Topical lectures December on neutrino physics: <u>https://indico.nikhef.nl/event/1828/</u>
- Plots on Wikipedia are good

General case of v oscillations

Lepton Mixing Matrix

$$|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i} |\nu_{i}\rangle; \quad \alpha = e, \mu, \tau$$

Where U elements from the Lepton Mixing Matrix

$$\begin{array}{rcl}
\nu_{1} & \nu_{2} & \nu_{3} \\
U &= \nu_{e} \\
\nu_{\mu} \\
\nu_{\tau} \\
\end{array}
\begin{bmatrix}
c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\
-s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\
s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \\
\end{bmatrix}$$

$$\begin{array}{rcl}
s_{12} &= \sin\theta_{12} \\
s_{23} &= \sin\theta_{23}
\end{array}$$
CP-violating phase δ

All mixing angles have now been measured!

$$\begin{array}{c} \theta_{12}\approx 34^{\circ}\\\\ \theta_{23}\approx 45^{\circ}\\\\ \theta_{13}\approx 8.6^{\circ} \end{array}$$

 \rightarrow We may be able to measure CP angle δ

Source: Topical lectures 12-2019, Decowski

= sin θ_{13}

 s_{13}

Neutrino case: 2 flavors

"Disappearance probability"

 $e \rightarrow x$: "Appearance probability"

Source: Topical lectures 12-2019, Lisi

Vacuum oscillations

$$P(\nu_e \to \nu_e) \simeq 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

$$P(\nu_\mu \to \nu_e) \simeq s_{23}^2 \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

$$P(\nu_\mu \to \nu_\mu) \simeq 1 - 4c_{13}^2 s_{23}^2 (1 - c_{13}^2 s_{23}^2) \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

$$P(\nu_\mu \to \nu_\tau) \simeq c_{13}^4 \sin^2 2\theta_{23} \left(\frac{\Delta m^2 L}{4E}\right)$$

Source: Topical lectures 12-2019, Lisi

Three v generations

Neutrino Masses

What is the ordering and absolute neutrino mass scale?

Source: Topical lectures 12-2019, Decowski

Present 3v knowledge in one slide (with 1-digit accuracy)

<u>e</u> μ τ

We have seen:	We would like to see:	+ Physics	
$\delta m^2 \sim 7 \times 10^{-5} eV^2$	δ (CP)	beyond 3v?	
$\Delta m^2 \sim 2 \times 10^{-9} \text{eV}^2$ $\sin^2 \theta_{12} \sim 0.3$	$sign(\Delta m^2) = ordering octant(\theta_{23})$	(anomalies,	
sin ² θ ₂₃ ~ 0.5	absolute mass scale	new states o	
sin²θ ₁₃ ~ 0.02	KM13 Neirac/Majorana nature	interactions	

Source: Topical lectures 12-2019, Lisi

or

The ORCA detector

Overview of MC chain: Making a numeric model

Overview of MC chain: Making a numeric model

Production channels

ORCA measures atmospheric neutrinos:

Atmospheric neutrinos come from cosmic rays interacting in the atmosphere and the reaction products decaying into neutrinos

Typical energies are O(GeV)

Source: Topical lectures 12-2019, Lisi

Mass effects Preliminary Earth Model

Selected oscillation probabilities

Selected oscillation probabilities

Oscillogram Normal ordering

Neutrino oscillation probability

Neutrino oscillation probability

Oscillogram Inverted ordering

Neutrino oscillation probability

Neutrino oscillation probability

From theory to measurement

Oscillations depend on energy and length traveled

$$P(\bar{v}_{e} \rightarrow \bar{v}_{e}) \simeq 1 - \sin^{2}2\Theta_{13} \sin^{2}\left(\frac{\Delta m^{2}L}{4E}\right)$$

oscillation
amplitude oscillating
factor

• $L = L_0 \cos \theta$

ORCA115 detector output 1/3

We apply cuts on muons and noise NB: this is only neutrino events in MC, no atm muons

These are many reconstructed events, classified to track or shower

All events: shower channel

Selected events: shower channel

ORCA115 detector output 2/3

Model fitting

- χ^2 -minimization, fitted in both θ_{23} quadrants
- Simultaneous pdf fit for track and shower channels
- Sensitivity: $S = \sqrt{\Delta \chi^2}$

Parameter	Central value NO	Central value IO	Treatment	
$ heta_{12}$ (°)	0.297	0.297		
$ heta_{13}(\degree)$	0.215	0.216	ゴな	
$ heta_{23}(\degree)$	0.425	0.589	New States	
$\Delta m_{21}^2 (\mathrm{eV}^2)$	7.37e-5	7.37e-5	2	
$\Delta m_{31}^2 (\text{eV}^2)$	2.56e-3	-2.54e-3	× ×	
δ_{CP}	1.38π	1.31π		

extended ML fit example

https://root.cern.ch/doc/master/rf202__extendedmlfit_8C.html

Free to fit, fixed or constrained by priors

ORCA115 detector output 3/3 NO vs. IO

What is the difference???

KM3NeT group meeting

Neutrino Mass Ordering: Asymmetry

Asymmetry: track and shower signal regions

Systematics

- Reconstructed energy (over-/underestimation)
- Reconstructed incoming angle
- Reconstructed particle type (PID)
- Flux (how many ν per flavor) \rightarrow Flux ratios
- Cross sections
- Earth model uncertainties (effects on oscillations)
- Detector effects (PMTs, etc)

Backup