Informal intro SSB/Higgs mechanism Topical Lectures June 2020

Avanish & Solange

First of all.

Feel free to ask questions!

Index

- Shortcomings of EW model
- Breaking a global continuous symmetry
- Breaking a local continuous symmetry

Literature

- Based mostly on "Particle Physics 1" by Marcel Merk, Ivo van Vulpen and Wouter Hulsbergen
- and very comprehensive)

Also useful to learn more on QFT:

- "Quantum Field Theory" by Mark Srednicki (self consistent modular format)
- "An Introduction to Quantum Field Theory" by Peskin and Schroeder (classic)
- theorist)

• "Quantum Field Theory and the Standard Model" by Matthew D. Schwartz (modern

"The Quantum Theory of Fields (vol. I, II and III)" by Weinberg (sacred scripts of a

Shortcomings Electroweak Model

- Massive gauge bosons are forbidden
- Massive fermions are forbidden in EW theory
- Unitarity violations

- QED is locally gauge invariant: the Lagrangian is invariant under ϕ
- (gauge boson/photon field):

$$\partial_{\mu} \rightarrow D_{\mu} - ieA_{\mu}, A'_{\mu} \rightarrow A_{\mu} +$$

$$\mathscr{L}_{QED} = \mathscr{L}_{free} + \mathscr{L}_{int} + \mathscr{L}_{Maxwell}$$

$$' \rightarrow e^{i\alpha(x)} \phi \quad U(1)$$

- To this end we introduced the covariant derivative D_{μ} and vector field A_{μ}

$$_{\iota} + \frac{1}{e} \partial_{\mu} \alpha$$

- QED is locally gauge invariant: the Lagrangian is invariant under ϕ
- (gauge boson/photon field):

$$\partial_{\mu} \to D_{\mu} - ieA_{\mu}, \quad A'_{\mu} \to A_{\mu} + \mathscr{L}_{QED} = \mathscr{L}_{free} + \mathscr{L}_{int} + \mathscr{L}_{Maxwell}$$

Propagation of e

$$' \rightarrow e^{i\alpha(x)} \phi \quad U(1)$$

- To this end we introduced the covariant derivative D_{μ} and vector field A_{μ}

$$\frac{1}{e}\partial_{\mu}\alpha$$

- QED is locally gauge invariant: the Lagrangian is invariant under ϕ
- (gauge boson/photon field):

$$\partial_{\mu} \to D_{\mu} - ieA_{\mu}, \quad A'_{\mu} \to A_{\mu} + \mathscr{L}_{QED} = \mathscr{L}_{free} + \mathscr{L}_{int} + \mathscr{L}_{Maxwel}$$

Propagation of *e*

Interaction 2e and γ

$$' \rightarrow e^{i\alpha(x)} \phi \quad U(1)$$

• To this end we introduced the covariant derivative D_{μ} and vector field A_{μ}

$$+ \frac{1}{e}\partial_{\mu}\alpha$$

- QED is locally gauge invariant: the Lagrangian is invariant under ϕ'
- (gauge boson/photon field):

$$\partial_{\mu} \to D_{\mu} - ieA_{\mu}, \quad A'_{\mu} \to A_{\mu} + \mathscr{L}_{QED} = \mathscr{L}_{free} + \mathscr{L}_{int} + \mathscr{L}_{Maxwel}$$

Propagation of e

Interaction 2e and γ

$$' \rightarrow e^{i\alpha(x)} \phi \quad U(1)$$

• To this end we introduced the covariant derivative D_{μ} and vector field A_{μ}

- Notice that the γ is massless (no mass term in the Lagrangian)
- So let's add one? $\mathscr{L}_{QED}^{new} = \mathscr{L}_{QED} + \frac{1}{2}m_{\gamma}^2 A_{\mu}A^{\mu}$
- We require this Lagrangian to be locally U(1) invariant, but is it? $\frac{1}{2}m_{\gamma}^{2}A_{\mu}A^{\mu} = \frac{1}{2}m_{\gamma}^{2}\left(A_{\mu} + \frac{1}{e}\partial_{\mu}\alpha\right)\left(A^{\mu} + \frac{1}{e}\partial^{\mu}\alpha\right) \neq \frac{1}{2}m_{\gamma}^{2}A_{\mu}A^{\mu}$

- Thus we see that massive gauge bosons aren't allowed in QED
- This is fine for photons
- Similar arguments hold for EW theory, where we know that the W and Z bosons are massive!
- Spontaneous symmetry breaking (SSB) will fix this!

Forbidden massive fermions in EW

- EW requires covariant derivatives of the form $D_{\mu} = \partial_{\mu} + \frac{ig}{2}\vec{\tau}\cdot\vec{W}_{\mu} + \frac{ig'}{2}YB_{\mu}$
- Here, isospin singlets (ψ_R) and doublets (ψ_I) transform as $\psi_R' \to e^{i\beta(x)Y}\psi_R$

 $\psi_{L}' \to e^{i\alpha(x)T + i\beta(x)Y}\psi_{L}$

Forbidden massive fermions in EW

- A mass term expressed in helicity states would be $-m_f \bar{\psi} \psi = -m_f (\bar{\psi}_R + \bar{\psi}_L) (\psi_L + \psi_R)$ $= - m_f \left(\bar{\psi}_R \psi_L + \bar{\psi}_L \psi_R \right)$ since $\bar{\psi}_i \psi_i = \frac{1}{\Delta} \bar{\psi} \left(1 - (\gamma^5)^2 \right) \psi =$
- After applying the transformations from the previous slide, we don't obtain the same mass term :-(
- Spontaneous symmetry breaking will fix this!

$$i=0$$
, with $i=R$ or L and $\left(\gamma^5
ight)^2=1$

Unitarity violations

 Say the W and Z obtained masses through SSB. Let's consider $\sigma(W_L^+Z_L \to W_L^+Z_L)$; three contributing diagrams:

Unitarity violations

• Resulting in an amplitude $\mathcal{M} \propto \frac{E_{CM}^2}{m_{TM}^2} + O(1)$

- **Perturbative** unitarity bounds violated at $E_{CM} \approx 2.5$ TeV, meaning that we cannot use perturbative QFT (i.e. Feynman rules) above this scale
- Including the Higgs exchange diagram, this behavior is exactly canceled:

$$\mathcal{M}_h \propto -\frac{E_{CM}^2}{m_W^2} + O(1)$$

Excited? Let's get into it!

But first... a Lagrangian mechanics refresher

Lagrangian Mechanics **Field equations**

•
$$\mathscr{L} = T(\operatorname{kin}) - V(\operatorname{pot})$$

• Euler-Lagrange e.o.m. $\frac{d}{dt} \left(\frac{\partial \mathscr{L}}{\frac{\partial q_i}{\partial t}} \right) - \frac{\partial \mathscr{L}}{\partial q_i} = 0$ for each type i
• Klein-Gordon $\left(\partial_{\mu} \partial^{\mu} + m^2 \right) \phi = 0$ from $\mathscr{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right) \left(\partial^{\mu} \phi \right) - \frac{1}{2} m^2 \phi^2$
• Dirac eq $\left(i \gamma_{\mu} \partial^{\mu} - m \right) \psi = 0$ from $\mathscr{L} = i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi - m \bar{\psi} \psi$

Lagrangian Mechanics Terminology

•
$$\mathscr{L} = \partial_{\mu}\phi\partial^{\mu}\phi + a_0 + a_1\phi + a_2\phi^2 +$$

- First term is the *kinetic* term
- a_0 is irrelevant if one considers the EL equations, thus can be neglected
- a_1 terms are absent, since the vacua of the potentials are usually located at $\langle \phi \rangle = 0$ or the fields are shifted to force this
- a_2 is the **mass** term
- All higher order terms are *interaction* terms

 $-a_3\phi^3 + \dots$

$$\mathscr{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right)^2 - V(\phi)$$
$$\bullet = \frac{1}{2} \left(\partial_{\mu} \phi \right)^2 - \frac{1}{2} \mu^2 \phi^2 - \frac{1}{4} \lambda \phi^4$$

• Two things to notice: 1. Symmetric under $\phi \to -\phi$

2. Potential has extrema at $|\phi_0| = 0$ v

• The first extremum holds for all μ , the l

$$|\phi_0| = \sqrt{\frac{-\mu^2}{\lambda}}$$

latter for $\mu^2 < 0$

minimum $|\phi_0|$, called the vacuum

• For $\mu^2 > 0$ the vacuum lies at $|\phi_0| = 0$, thus it was justified to put $a_1 = 0$

• In perturbative QFT we treat the fields ϕ as perturbations around a stable

- In perturbative QFT we treat the fiel minimum $|\phi_0|$, called the vacuum
- For $\mu^2 > 0$ the vacuum lies at $|\phi_0| = 0,$ thus it was justified to put $a_1 = 0$

• For $\mu^2 < 0$ we have an unstable maximum at $|\phi_0| = 0$ and stable minima at $|\phi_0| = \sqrt{\frac{-\mu^2}{\lambda}}$

- In perturbative QFT we treat the fields ϕ as perturbations around a stable

- Let us pick the vacuum to be $\phi_0 = \sqrt{\frac{-\mu^2}{\lambda}} \equiv v$
- Shift the fields by this constant $\eta =$ such that $\eta_0 = 0$

$$\phi - v$$
,

$$\begin{aligned} \mathscr{L}_{kin} &= \frac{1}{2} \left(\partial_{\mu} \left(\eta + v \right) \partial^{\mu} \left(\eta + v \right) \right) \\ V &= \frac{\mu^2}{2} \left(\eta + v \right)^2 + \frac{\lambda}{4} \left(\eta + v \right) \\ &= \lambda v^2 \eta^2 + \lambda v \eta^3 + \frac{1}{4} \lambda \eta^4 - y^2 \\ \mathscr{L}_{full} &= \frac{1}{2} \left(\partial_{\mu} \eta \right)^2 - \lambda v^2 \eta^2 - y^2 - y^2 \end{aligned}$$

 $(+v)) = \frac{1}{2} \left(\partial_{\mu}\eta\right)^{2}$ $)^4$ $\frac{1}{4}\lambda v^4$ $\lambda v \eta^3 - \frac{1}{4} \lambda \eta^4 + \frac{1}{4} \lambda v^4$

- Lagrangian for massive scalar particle with interactions
- theory: Spontaneous Symmetry Breaking

$$\mathscr{L}_{full} = \frac{1}{2} \left(\partial_{\mu} \eta \right)^2 - \lambda v^2 \eta^2 - \lambda v \eta^3 - \frac{1}{4} \lambda \eta^4 + \frac{1}{4} \lambda v^4$$

$$m_{\eta}^2 = \lambda v^2 \rightarrow m_{\eta} = \sqrt{2\lambda v^2} = \sqrt{-2\mu^2}$$

• No symmetry in $\eta \to -\eta$, although $\phi \to -\phi$ still present in original Lagrangian. In other words, the symmetry is broken in the vacuum, but still present in the original

- Let's alter the model by adding a constant of $\mathscr{L} = \left(\partial_{\mu}\phi\right)^{*}\left(\partial^{\mu}\phi\right) \mu^{2}\left(\phi^{*}\phi\right) \mu^{2}\left(\phi^{*}\phi\right) \mu^{2}\left(\phi^{*}\phi\right) \mu^{2}\left(\phi^{*}\phi\right) \mu^{2}\left(\phi^{*}\phi\right) + \mu^{2}\left(\phi^{*}\phi\right) +$
- Respects a U(1) global symmetry $\phi' \to e^{\imath \alpha} \phi$
- In terms of components $\mathscr{L} = \frac{1}{2} \left(\partial_{\mu} \phi_1 \right)^2 + \frac{1}{2} \left(\partial_{\mu} \phi_2 \right)^2 - \frac{1}{2} \left(\partial_{\mu} \phi_2 \right)^$

Somplex scalar field
$$\phi = \frac{1}{\sqrt{2}} (\phi_1 + i\phi_2)$$

- $\lambda (\phi^* \phi)^2$

$$\frac{1}{2}\mu^2 \left(\phi_1^2 + \phi_2^2\right) - \frac{1}{4}\lambda \left(\phi_1^2 + \phi_2^2\right)^2$$

Let us play the same game

• Extremal values of the potential at

$$\sqrt{2} |\phi_0| = \sqrt{\phi_1^2 + \phi_2^2} = 0 \lor \sqrt{2} |\phi_0| = \pm \sqrt{\phi_1^2 + \phi_2^2} = \pm \sqrt{\frac{-\mu^2}{\lambda}} \equiv \pm \sqrt{\frac{-\mu^2}{\lambda}} = \pm \sqrt{\frac{-\mu^2}{$$

- an unstable extremum for $\mu^2 < 0$
- vacua for $\mu^2 < 0$ constrained to the value of v

• As in the previous case, the first minimum is the vacuum for $\mu^2 > 0$ and it is

However, the second minimum now corresponds to an infinite amount of

$$\mathscr{L} = \frac{1}{2} \left(\partial_{\mu} \phi_1 \right)^2 - \frac{1}{2} \mu^2 \phi_1^2 + \frac{1}{2} \left(\partial_{\mu} \phi_2 \right)^2$$

Particle 1 with mass μ

Particle 2 with mass μ

Single vacuum at (0,0)

Unstable extremum at (0,0)

Infinite vacua constrained to $\sqrt{\phi_1^2 + \phi_2^2} = \sqrt{\frac{-\mu^2}{\lambda}} \equiv v$

Choose a vacuum state ϕ_0 as $\phi_1 = v \land$

$$\Phi_2 = 0$$

- Let us shift the fields again to have a zero vacuum expectation value: $\eta = \phi_1 - v \text{ and } \xi = \phi_2 \text{ such that}$ $\phi = \frac{1}{\sqrt{2}} \left(\eta + v + i\xi \right)$
- Subsequently we want to express our Lagrangian in terms of the shifted fields

$$\mathscr{L}_{kin} = \frac{1}{2} \left(\partial_{\mu} \left(\eta + v - i\xi \right) \partial^{\mu} \left(\eta + v + i\xi \right) \right) = \frac{1}{2} \left(\partial_{\mu} \eta \right)^{2} + \frac{1}{2} \left(\partial_{\mu} \xi \right)^{2}$$
$$V = -\frac{1}{4} \lambda v^{4} + \lambda v^{2} \eta^{2} + \lambda v \eta^{3} + \frac{1}{4} \lambda \eta^{4} + \frac{1}{4} \lambda \xi^{4} + \lambda v \eta \xi^{2} + \frac{1}{2} \lambda \eta^{2} \xi^{2}$$

 $\mu^2 < 0$

$$\mathscr{L}_{kin} = \frac{1}{2} \left(\partial_{\mu} \left(\eta + v - i\xi \right) \partial^{\mu} \left(\eta + v + i\xi \right) \right) = \frac{1}{2} \left(\partial_{\mu} \eta \right)^{2} + \frac{1}{2} \left(\partial_{\mu} \xi \right)^{2}$$
$$V = -\frac{1}{4} \lambda v^{4} + \frac{\lambda v^{2} \eta^{2}}{4} + \lambda v \eta^{3} + \frac{1}{4} \lambda \eta^{4} + \frac{1}{4} \lambda \xi^{4} + \lambda v \eta \xi^{2} + \frac{1}{2} \lambda \eta^{2} \xi^{2}$$

Massive scalar particle η with mass $m_{\eta} = \sqrt{2\lambda v^2} = \sqrt{-2\mu^2} > 0$

 $\mu^2 < 0$

$$\mathscr{L}_{kin} = \frac{1}{2} \left(\partial_{\mu} \left(\eta + v - i\xi \right) \partial^{\mu} \left(\eta + v + i\xi \right) \right) = \frac{1}{2} \left(\partial_{\mu} \eta \right)^{2} + \frac{1}{2} \left(\partial_{\mu} \xi \right)^{2}$$
$$V = -\frac{1}{4} \lambda v^{4} + \frac{\lambda v^{2} \eta^{2}}{4} + \lambda v \eta^{3} + \frac{1}{4} \lambda \eta^{4} + \frac{1}{4} \lambda \xi^{4} + \lambda v \eta \xi^{2} + \frac{1}{2} \lambda \eta^{2} \xi^{2}$$

Massive scalar particle η with mass $m_{\eta} = \sqrt{2\lambda v^2} = \sqrt{-2\mu^2} > 0$

 $\mu^2 < 0$

Massless scalar particle ξ

- The vacuum is not U(1) invariant anymore, no $\eta' \rightarrow e^{i\alpha}\eta$ invariance
- the vacuum differently, $\phi = (v + c_1 \eta) e^{ic_2 \xi}$ for constants c_1 and c_2
- particle ξ is the **Goldstone boson**
- of a massless particle (Goldstone boson)

• At leading order a shift in ξ as $\xi' \to \xi + \alpha$ leaves the Lagrangian invariant

• Can be shown that this is a symmetry at all orders if we were to parametrize

• This is a remnant of the global U(1) symmetry and the massless spin-zero

• Each spontaneously broken continuous global symmetry implies the existence

The Mexican hat potential: expansions around the minimum with $m^2 > 0$ correspond to radial excitations (η), $m^2 = 0$ corresponds to excitations around the symmetry direction where the potential is flat (ξ).

So what about local gauge symmetries?

- Lagrangian invariant under $\phi'
 ightarrow e$
- To this end we introduced the covariant derivative D_{μ} and vector field A_{μ} (gauge boson/photon field):

$$\partial_{\mu} \rightarrow D_{\mu} - ieA_{\mu}, A'_{\mu} \rightarrow A_{\mu} +$$

$$\mathscr{L}_{QED} = \left(D_{\mu}\phi\right)^{\dagger} \left(D^{\mu}\phi\right) - \frac{1}{4}F_{\mu\nu}^{2}$$

$$\phi^{i\alpha(x)}$$

- photon
- For $\mu^2 < 0$ we again obtain an infinite amount of vacua, bounded as $\phi_1^2 + \phi_2^2 = \frac{-\mu^2}{\lambda} \equiv v^2$

Define shifted fields as usual, such

• $\mu^2 > 0$ is the same as in the previous model, but with an additional massless

that
$$\phi = \frac{1}{\sqrt{2}} \left(\eta + v + i\xi \right)$$

$$\mathscr{L}_{kin} = (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi)$$
$$= (\partial_{\mu} + ieA_{\mu})\phi^{*}(\partial^{\mu} - ieA_{\mu})\phi^{*}(\partial^{\mu$$

 $V = \lambda v^2 \eta^2 + \dots$

New terms

$$\mathscr{L}_{kin} = (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi)$$
$$= (\partial_{\mu} + ieA_{\mu})\phi^{*}(\partial^{\mu} - ieA_{\mu})\phi^{*}(\partial^{\mu$$

$$V = \lambda v^2 \eta^2 + \dots$$

$\mathscr{L} = \frac{1}{2} \left(\partial_{\mu} \eta \right)^2 - \lambda v^2 \eta^2 + \frac{1}{2} \left(\partial_{\mu} \xi \right)^2 - \frac{1}{4} \left(F_{\mu\nu} \right)^2 + \frac{1}{2} e^2 v^2 A_{\mu}^2 - ev A_{\mu} \left(\partial^{\mu} \xi \right) + \dots$

$$\mathscr{L}_{kin} = (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi)$$
$$= (\partial_{\mu} + ieA_{\mu})\phi^{*}(\partial^{\mu} - ieA_{\mu})\phi^{*}(\partial^{\mu$$

$$V = \lambda v^2 \eta^2 + \dots$$

$$\mathscr{L} = \frac{1}{2} \left(\partial_{\mu} \eta \right)^{2} - \lambda v^{2} \eta^{2} + \frac{1}{2} \left(\partial_{\mu} \xi \right)^{2}$$
Massive η
Massless ξ

New terms

- The weird term complicates the interpretation of the Lagrangian
- Luckily there is a way around!
- Remember that the gauge fields are defined up to a (partial) derivative $A'_{\mu} \rightarrow A_{\mu} + \frac{1}{e} \partial_{\mu} \alpha$, let us focus on the following three terms in \mathscr{L}

$$\cdot \frac{1}{2} \left(\partial_{\mu} \xi \right)^{2} + \frac{1}{2} e^{2} v^{2} A_{\mu}^{2} - e v A_{\mu} \left(\partial^{\mu} \xi \right) = \frac{1}{2} e^{2} v^{2} \left(A_{\mu} - \frac{1}{e v} \left(\partial_{\mu} \xi \right) \right)^{2}$$

• Here we recognize a transformed gauge field This choice is called the *unitary gauge*

The scalar field becomes $\phi'
ightarrow e^{-irac{\xi}{v}} \phi = e^{-irac{\xi}{v}}$

expand the exponential as $e^{i\frac{\xi}{v}} = 1 + i\frac{\xi}{v} + O(\xi^2)$, then $e^{-i\frac{\xi}{v}}\frac{1}{\sqrt{2}}\left(\eta + v + i\xi\right) = e^{-i\frac{\xi}{v}}\frac{1}{\sqrt{2}}\left(\eta + v\right)e^{i\frac{\xi}{v}}$, where we neglected the $O(\xi\eta)$ term

Here we recognize η as the Higgs scalar field

with
$$lpha=-\xi/v$$
, such that it becomes $rac{1}{2}e^2v^2\left(A'_{\mu}
ight)^2$.

$$\frac{1}{\sqrt{2}} \left(\eta + v + i\xi \right)$$
(ξ^2), then

$$h, \operatorname{so} \phi' \to \frac{1}{\sqrt{2}} \left(v + h \right)$$

 $\mathscr{L} = \frac{1}{2} \left(\partial_{\mu} h \right)^{2} - \lambda v^{2} h^{2} + \frac{1}{2} e^{2} v^{2} A_{\mu}^{2} + e^{2} v A_{\mu}^{2} h + \frac{1}{2} e^{2} A_{\mu}^{2} h^{2} - \lambda v h^{3} - \frac{1}{4} \lambda h^{4}$ $-\frac{1}{\Lambda}F_{\mu\nu}^2$

$$\mathscr{L} = \frac{1}{2} \left(\partial_{\mu} h \right)^2 - \lambda v^2 h^2 + \frac{1}{2} e^2 v^2$$

Massive γ

 $-\frac{1}{\Lambda}F_{\mu\nu}^2$

 $^{2}A_{\mu}^{2} + e^{2}vA_{\mu}^{2}h + \frac{1}{2}e^{2}A_{\mu}^{2}h^{2} - \lambda vh^{3} - \frac{1}{4}\lambda h^{4}$

h selfinteractions

- The gauge boson A_{μ} has eaten the Goldstone boson ξ to obtain a mass $m_A = ev$, this is the *Higgs mechanism*
- Higgs scalar and also Higgs self-interactions

We identified interactions between the massive gauge boson and the massive

Take away message

- present in the original Lagrangian
- Each broken global continuous symmetry results in a massless particle, **Goldstone boson**
- gauge particle to become massive, Higgs mechanism

A spontaneously broken symmetry is broken in the true vacuum, but still

When breaking a local gauge symmetry, the Goldstone gets eaten by the

Extra: Superconductivity

Ginzburg-Landau model

- Near T_C with order parameter ϕ $\mathscr{L} = -\frac{1}{4}F_{\mu\nu}^2 + |D_{\mu}\phi|^2 m^2 |\phi|^2$
- For $T < T_C \rightarrow$ abelian Higgs model, U(1) spontaneously broken
- Effective Lagrangian

$$\mathscr{L} = -\frac{1}{4}F_{\mu\nu}^2 + \frac{1}{2}m_A^2 A_{\mu}^2$$

$$^2 - \frac{1}{4} |\phi|^4$$
 where $m^2 \propto (T - T_C)$

Ginzburg-Landau model

• Current density
$$\vec{j} = -\frac{\partial \mathscr{L}}{\partial \vec{A}} = -m_A^2$$

• Also $\nabla \times \vec{i} = -m^2 \nabla \times \vec{A} = -m^2$

• Also
$$\nabla \times j = -m_A^2 \nabla \times A = -m_A^2$$

• Then

$$\nabla \times (\nabla \times \overrightarrow{B}) = \nabla (\nabla \cdot \overrightarrow{B}) - \nabla^2 \overrightarrow{B}$$
$$= \nabla \times \overrightarrow{j} = -m_A^2 \overrightarrow{B}$$
• Remember that $\nabla \cdot \overrightarrow{B} = 0$

 \overrightarrow{A} , second London equation

\overrightarrow{B} and $\nabla \times \overrightarrow{B} = \overrightarrow{j}$

Ginzburg-Landau model

- First London equation $(m_A^2 \nabla^2)\vec{B} = 0$
- For $m_A^2 \neq 0$ there is no constant solution
- The Meissner effect: a superconductor cannot possess a magnetic field
- A solution

$$\overrightarrow{B}(x) \propto \overrightarrow{B}_0 e^{-\frac{x}{\lambda}}$$
$$\lambda = \frac{1}{m_A}$$

where λ is the penetration depth

