Informal intro SSB/Higgs mechanism

Topical Lectures June 2020

Avanish \& Solange

First of all..

Feel free to ask questions!

Index

- Shortcomings of EW model
- Breaking a global continuous symmetry
- Breaking a local continuous symmetry

Literature

- Based mostly on "Particle Physics 1" by Marcel Merk, Ivo van Vulpen and Wouter Hulsbergen
- "Quantum Field Theory and the Standard Model" by Matthew D. Schwartz (modern and very comprehensive)

Also useful to learn more on QFT:

- "Quantum Field Theory" by Mark Srednicki (self consistent modular format)
- "An Introduction to Quantum Field Theory" by Peskin and Schroeder (classic)
- "The Quantum Theory of Fields (vol. I, II and III)" by Weinberg (sacred scripts of a theorist)

Shortcomings Electroweak Model

- Massive gauge bosons are forbidden
- Massive fermions are forbidden in EW theory
- Unitarity violations

Forbidden massive gauge bosons

- QED is locally gauge invariant: the Lagrangian is invariant under $\phi^{\prime} \rightarrow e^{i \alpha(x)} \phi \quad \mathrm{U}(1)$
- To this end we introduced the covariant derivative D_{μ} and vector field A_{μ} (gauge boson/photon field):

$$
\begin{aligned}
\partial_{\mu} & \rightarrow D_{\mu}-i e A_{\mu}, \quad A_{\mu}^{\prime} \rightarrow A_{\mu}+\frac{1}{e} \partial_{\mu} \alpha \\
\mathscr{L}_{Q E D} & =\mathscr{L}_{\text {free }}+\mathscr{L}_{\text {int }}+\mathscr{L}_{\text {Maxwell }}
\end{aligned}
$$

Forbidden massive gauge bosons

- QED is locally gauge invariant: the Lagrangian is invariant under $\phi^{\prime} \rightarrow e^{i \alpha(x)} \phi \quad \mathrm{U}(1)$
- To this end we introduced the covariant derivative D_{μ} and vector field A_{μ} (gauge boson/photon field):

$$
\begin{aligned}
\partial_{\mu} & \rightarrow D_{\mu}-i e A_{\mu}, \quad A_{\mu}^{\prime} \rightarrow A_{\mu}+\frac{1}{e} \partial_{\mu} \alpha \\
\mathscr{L}_{Q E D} & =\mathscr{L}_{\text {free }}+\mathscr{L}_{\text {int }}+\mathscr{L}_{\text {Maxwell }}
\end{aligned}
$$

Propagation of e

Forbidden massive gauge bosons

- QED is locally gauge invariant: the Lagrangian is invariant under $\phi^{\prime} \rightarrow e^{i \alpha(x)} \phi \quad \mathrm{U}(1)$
- To this end we introduced the covariant derivative D_{μ} and vector field A_{μ} (gauge boson/photon field):

$$
\begin{aligned}
\partial_{\mu} & \rightarrow D_{\mu}-i e A_{\mu}, \quad A_{\mu}^{\prime} \rightarrow A_{\mu}+\frac{1}{e} \partial_{\mu} \alpha \\
\mathscr{L}_{Q E D} & =\mathscr{L}_{\text {free }}+\mathscr{L}_{\text {int }}+\mathscr{L}_{\text {Maxwell }}
\end{aligned}
$$

Propagation of $e \quad$ Interaction $2 e$ and γ

Forbidden massive gauge bosons

- QED is locally gauge invariant: the Lagrangian is invariant under $\phi^{\prime} \rightarrow e^{i \alpha(x)} \phi \quad \mathrm{U}(1)$
- To this end we introduced the covariant derivative D_{μ} and vector field A_{μ} (gauge boson/photon field):

$$
\begin{aligned}
\partial_{\mu} & \rightarrow D_{\mu}-i e A_{\mu}, \quad A_{\mu}^{\prime} \rightarrow A_{\mu}+\frac{1}{e} \partial_{\mu} \alpha \\
\mathscr{L}_{\text {QED }} & =\mathscr{L}_{\text {free }}+\mathscr{L}_{\text {int }}+\mathscr{L}_{\text {Maxwell }}
\end{aligned}
$$

Forbidden massive gauge bosons

- Notice that the γ is massless (no mass term in the Lagrangian)
- So let's add one?

$$
\mathscr{L}_{Q E D}^{n e w}=\mathscr{L}_{Q E D}+\frac{1}{2} m_{\gamma}^{2} A_{\mu} A^{\mu}
$$

- We require this Lagrangian to be locally $U(1)$ invariant, but is it?

$$
\frac{1}{2} m_{\gamma}^{2} A_{\mu} A^{\mu}=\frac{1}{2} m_{\gamma}^{2}\left(A_{\mu}+\frac{1}{e} \partial_{\mu} \alpha\right)\left(A^{\mu}+\frac{1}{e} \partial^{\mu} \alpha\right) \neq \frac{1}{2} m_{\gamma}^{2} A_{\mu} A^{\mu}
$$

Forbidden massive gauge bosons

- Thus we see that massive gauge bosons aren't allowed in QED
- This is fine for photons
- Similar arguments hold for EW theory, where we know that the W and Z bosons are massive!
- Spontaneous symmetry breaking (SSB) will fix this!

Forbidden massive fermions in EW

- EW requires covariant derivatives of the form

$$
D_{\mu}=\partial_{\mu}+\frac{i g}{2} \vec{\tau} \cdot \vec{W}_{\mu}+\frac{i g^{\prime}}{2} Y B_{\mu}
$$

- Here, isospin singlets $\left(\psi_{R}\right)$ and doublets $\left(\psi_{L}\right)$ transform as

$$
\begin{aligned}
\psi_{R}^{\prime} & \rightarrow e^{i \beta(x) Y} \psi_{R} \\
\psi_{L}^{\prime} & \rightarrow e^{i \alpha(x) T+i \beta(x) Y} \psi_{L}
\end{aligned}
$$

Forbidden massive fermions in EW

- A mass term expressed in helicity states would be

$$
\begin{aligned}
-m_{f} \bar{\psi} \psi & =-m_{f}\left(\bar{\psi}_{R}+\bar{\psi}_{L}\right)\left(\psi_{L}+\psi_{R}\right) \\
& =-m_{f}\left(\bar{\psi}_{R} \psi_{L}+\bar{\psi}_{L} \psi_{R}\right)
\end{aligned}
$$

$$
\text { since } \bar{\psi}_{i} \psi_{i}=\frac{1}{4} \bar{\psi}\left(1-\left(\gamma^{5}\right)^{2}\right) \psi=0, \text { with } i=R \text { or } L \text { and }\left(\gamma^{5}\right)^{2}=1
$$

- After applying the transformations from the previous slide, we don't obtain the same mass term :-(
- Spontaneous symmetry breaking will fix this!

Unitarity violations

- Say the W and Z obtained masses through SSB. Let's consider $\sigma\left(W_{L}^{+} Z_{L} \rightarrow W_{L}^{+} Z_{L}\right)$; three contributing diagrams:

$+$

Unitarity violations

. Resulting in an amplitude $\mathscr{M} \propto \frac{E_{C M}^{2}}{m_{W}^{2}}+O(1)$

- Perturbative unitarity bounds violated at $E_{C M} \approx 2.5 \mathrm{TeV}$, meaning that we cannot use perturbative QFT (i.e. Feynman rules) above this scale
- Including the Higgs exchange diagram, this behavior is exactly canceled:

$$
\mathscr{M}_{h} \propto-\frac{E_{C M}^{2}}{m_{W}^{2}}+O(1)
$$

Excited? Let's get into it!

But first... a Lagrangian mechanics refresher

Lagrangian Mechanics

Field equations

- $\mathscr{L}=T($ kin $)-V($ pot $)$
. Euler-Lagrange e.o.m. $\frac{d}{d t}\left(\frac{\partial \mathscr{L}}{\frac{\partial q_{i}}{\partial t}}\right)-\frac{\partial \mathscr{L}}{\partial q_{i}}=0$ for each type i
- Klein-Gordon $\left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \phi=0$ from $\mathscr{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2}$
- Dirac eq $\left(i \gamma_{\mu} \partial^{\mu}-m\right) \psi=0$ from $\mathscr{L}=i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi$

Lagrangian Mechanics

Terminology

- $\mathscr{L}=\partial_{\mu} \phi \partial^{\mu} \phi+a_{0}+a_{1} \phi+a_{2} \phi^{2}+a_{3} \phi^{3}+\ldots$
- First term is the kinetic term
- a_{0} is irrelevant if one considers the EL equations, thus can be neglected
- a_{1} terms are absent, since the vacua of the potentials are usually located at $\langle\phi\rangle=0$ or the fields are shifted to force this
- a_{2} is the mass term
- All higher order terms are interaction terms

Symmetry breaking

Simple model

$$
\begin{aligned}
\mathscr{L} & =\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-V(\phi) \\
& =\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} \mu^{2} \phi^{2}-\frac{1}{4} \lambda \phi^{4}
\end{aligned}
$$

- Two things to notice:

1. Symmetric under $\phi \rightarrow-\phi$
2. Potential has extrema at $\left|\phi_{0}\right|=0 \vee\left|\phi_{0}\right|=\sqrt{\frac{-\mu^{2}}{\lambda}}$

- The first extremum holds for all μ, the latter for $\mu^{2}<0$

Symmetry breaking

Simple model

- In perturbative QFT we treat the fields ϕ as perturbations around a stable minimum $\left|\phi_{0}\right|$, called the vacuum
- For $\mu^{2}>0$ the vacuum lies at $\left|\phi_{0}\right|=0$, thus it was justified to put $a_{1}=0$

Symmetry breaking

Simple model

- In perturbative QFT we treat the fields ϕ as perturbations around a stable minimum $\left|\phi_{0}\right|$, called the vacuum
- For $\mu^{2}>0$ the vacuum lies at $\left|\phi_{0}\right|=0$, thus it was justified to put $a_{1}=0$
- For $\mu^{2}<0$ we have an unstable maximum at $\left|\phi_{0}\right|=0$ and stable minima at $\left|\phi_{0}\right|=\sqrt{\frac{-\mu^{2}}{\lambda}}$

Symmetry breaking

Simple model

. Let us pick the vacuum to be $\phi_{0}=\sqrt{\frac{-\mu^{2}}{\lambda}} \equiv v$

- Shift the fields by this constant $\eta=\phi-v$, such that $\eta_{0}=0$

Symmetry breaking

Simple model

$$
\begin{aligned}
& \mathscr{L}_{\text {kin }}=\frac{1}{2}\left(\partial_{\mu}(\eta+v) \partial^{\mu}(\eta+v)\right)=\frac{1}{2}\left(\partial_{\mu} \eta\right)^{2} \\
& V=\frac{\mu^{2}}{2}(\eta+v)^{2}+\frac{\lambda}{4}(\eta+v)^{4} \\
& \quad=\lambda v^{2} \eta^{2}+\lambda v \eta^{3}+\frac{1}{4} \lambda \eta^{4}-\frac{1}{4} \lambda v^{4} \\
& \mathscr{L}_{\text {full }}=\frac{1}{2}\left(\partial_{\mu} \eta\right)^{2}-\lambda v^{2} \eta^{2}-\lambda v \eta^{3}-\frac{1}{4} \lambda \eta^{4}+\frac{1}{4} \lambda v^{4}
\end{aligned}
$$

Symmetry breaking

Simple model

$$
\mathscr{L}_{\text {full }}=\frac{1}{2}\left(\partial_{\mu} \eta\right)^{2}-\lambda v^{2} \eta^{2}-\lambda v \eta^{3}-\frac{1}{4} \lambda \eta^{4}+\frac{1}{4} \lambda v^{4}
$$

. Second term determines the mass: $\frac{1}{2} m_{\eta}^{2}=\lambda v^{2} \rightarrow m_{\eta}=\sqrt{2 \lambda v^{2}}=\sqrt{-2 \mu^{2}}$ remember that $\mu^{2}<0$, thus the mass is positive

- Lagrangian for massive scalar particle with interactions
- No symmetry in $\eta \rightarrow-\eta$, although $\phi \rightarrow-\phi$ still present in original Lagrangian. In other words, the symmetry is broken in the vacuum, but still present in the original theory: Spontaneous Symmetry Breaking

Symmetry breaking

U(1) global symmetry

. Let's alter the model by adding a complex scalar field $\phi=\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right)$

$$
\mathscr{L}=\left(\partial_{\mu} \phi\right)^{*}\left(\partial^{\mu} \phi\right)-\mu^{2}\left(\phi^{*} \phi\right)-\lambda\left(\phi^{*} \phi\right)^{2}
$$

- Respects a $U(1)$ global symmetry $\phi^{\prime} \rightarrow e^{i \alpha} \phi$
- In terms of components

$$
\mathscr{L}=\frac{1}{2}\left(\partial_{\mu} \phi_{1}\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \phi_{2}\right)^{2}-\frac{1}{2} \mu^{2}\left(\phi_{1}^{2}+\phi_{2}^{2}\right)-\frac{1}{4} \lambda\left(\phi_{1}^{2}+\phi_{2}^{2}\right)^{2}
$$

Let us play the same game

Symmetry breaking

U(1) global symmetry

- Extremal values of the potential at

$$
\sqrt{2}\left|\phi_{0}\right|=\sqrt{\phi_{1}^{2}+\phi_{2}^{2}}=0 \vee \sqrt{2}\left|\phi_{0}\right|= \pm \sqrt{\phi_{1}^{2}+\phi_{2}^{2}}= \pm \sqrt{\frac{-\mu^{2}}{\lambda}} \equiv \pm v
$$

- As in the previous case, the first minimum is the vacuum for $\mu^{2}>0$ and it is an unstable extremum for $\mu^{2}<0$
- However, the second minimum now corresponds to an infinite amount of vacua for $\mu^{2}<0$ constrained to the value of v

Symmetry breaking

U(1) global symmetry

$\mathscr{L}=\frac{1}{2}\left(\partial_{\mu} \phi_{1}\right)^{2}-\frac{1}{2} \mu^{2} \phi_{1}^{2}+\frac{1}{2}\left(\partial_{\mu} \phi_{2}\right)^{2}-\frac{1}{2} \mu^{2} \phi_{2}^{2}+\mathscr{L}_{\text {int }}$

Particle 1 with mass $\mu \quad$ Particle 2 with mass μ

Single vacuum at $(0,0)$

Symmetry breaking

 U(1) global symmetry$$
\mu^{2}<0
$$

Unstable extremum at $(0,0)$
Infinite vacua constrained to $\sqrt{\phi_{1}^{2}+\phi_{2}^{2}}=\sqrt{\frac{-\mu^{2}}{\lambda}} \equiv v$

Choose a vacuum state ϕ_{0} as $\phi_{1}=v \wedge \phi_{2}=0$

Symmetry breaking

U(1) global symmetry

$\mu^{2}<0$

- Let us shift the fields again to have a zero vacuum expectation value: $\eta=\phi_{1}-v$ and $\xi=\phi_{2}$ such that $\phi=\frac{1}{\sqrt{2}}(\eta+v+i \xi)$
- Subsequently we want to express our Lagrangian in terms of the shifted fields

Symmetry breaking

 $\mathbf{U}(1)$ global symmetry$$
\mu^{2}<0
$$

$$
\begin{aligned}
& \mathscr{L}_{\text {kin }}=\frac{1}{2}\left(\partial_{\mu}(\eta+v-i \xi) \partial^{\mu}(\eta+v+i \xi)\right)=\frac{1}{2}\left(\partial_{\mu} \eta\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \xi\right)^{2} \\
& V=-\frac{1}{4} \lambda v^{4}+\lambda v^{2} \eta^{2}+\lambda v \eta^{3}+\frac{1}{4} \lambda \eta^{4}+\frac{1}{4} \lambda \xi^{4}+\lambda v \eta \xi^{2}+\frac{1}{2} \lambda \eta^{2} \xi^{2}
\end{aligned}
$$

Symmetry breaking

U(1) global symmetry

$$
\mu^{2}<0
$$

$$
\begin{aligned}
& \mathscr{L}_{\text {kin }}=\frac{1}{2}\left(\partial_{\mu}(\eta+v-i \xi) \partial^{\mu}(\eta+v+i \xi)\right)=\frac{1}{2}\left(\partial_{\mu} \eta\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \xi\right)^{2} \\
& V=-\frac{1}{4} \lambda v^{4}+\lambda v^{2} \eta^{2}+\lambda v \eta^{3}+\frac{1}{4} \lambda \eta^{4}+\frac{1}{4} \lambda \xi^{4}+\lambda v \eta \xi^{2}+\frac{1}{2} \lambda \eta^{2} \xi^{2}
\end{aligned}
$$

Massive scalar particle η with mass

$$
m_{\eta}=\sqrt{2 \lambda v^{2}}=\sqrt{-2 \mu^{2}}>0
$$

Symmetry breaking

U(1) global symmetry

$$
\mu^{2}<0
$$

$$
\begin{aligned}
& \mathscr{L}_{\text {kin }}=\frac{1}{2}\left(\partial_{\mu}(\eta+v-i \xi) \partial^{\mu}(\eta+v+i \xi)\right)=\frac{1}{2}\left(\partial_{\mu} \eta\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \xi\right)^{2} \\
& V=-\frac{1}{4} \lambda v^{4}+\lambda v^{2} \eta^{2}+\lambda v \eta^{3}+\frac{1}{4} \lambda \eta^{4}+\frac{1}{4} \lambda \xi^{4}+\lambda v \eta \xi^{2}+\frac{1}{2} \lambda \eta^{2} \xi^{2}
\end{aligned}
$$

Massive scalar particle η with mass $m_{\eta}=\sqrt{2 \lambda v^{2}}=\sqrt{-2 \mu^{2}}>0$

Massless scalar particle ξ

Symmetry breaking

U(1) global symmetry

- The vacuum is not $\mathrm{U}(1)$ invariant anymore, no $\eta^{\prime} \rightarrow e^{i \alpha} \eta$ invariance
- At leading order a shift in ξ as $\xi^{\prime} \rightarrow \xi+\alpha$ leaves the Lagrangian invariant
- Can be shown that this is a symmetry at all orders if we were to parametrize the vacuum differently, $\phi=\left(v+c_{1} \eta\right) e^{i c_{2} \xi}$ for constants c_{1} and c_{2}
- This is a remnant of the global $U(1)$ symmetry and the massless spin-zero particle ξ is the Goldstone boson
- Each spontaneously broken continuous global symmetry implies the existence of a massless particle (Goldstone boson)

Symmetry breaking

U(1) global symmetry

The Mexican hat potential: expansions around the minimum with $m^{2}>0$ correspond to radial excitations $(\eta), m^{2}=0$ corresponds to excitations around the symmetry direction where the potential is flat (ξ).

So what about local gauge symmetries?

Symmetry breaking

Local U(1) gauge symmetry

- Lagrangian invariant under $\phi^{\prime} \rightarrow e^{i \alpha(x)} \phi$
- To this end we introduced the covariant derivative D_{μ} and vector field A_{μ} (gauge boson/photon field):

$$
\begin{aligned}
\partial_{\mu} & \rightarrow D_{\mu}-i e A_{\mu}, A_{\mu}^{\prime} \rightarrow A_{\mu}+\frac{1}{e} \partial_{\mu} \alpha \\
\mathscr{L}_{Q E D} & =\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-\frac{1}{4} F_{\mu \nu}^{2}-\mu^{2}\left(\phi^{*} \phi\right)-\lambda\left(\phi^{*} \phi\right)^{2}
\end{aligned}
$$

Symmetry breaking

Local U(1) gauge symmetry

- $\mu^{2}>0$ is the same as in the previous model, but with an additional massless photon
- For $\mu^{2}<0$ we again obtain an infinite amount of vacua, bounded as
$\phi_{1}^{2}+\phi_{2}^{2}=\frac{-\mu^{2}}{\lambda} \equiv v^{2}$
. Define shifted fields as usual, such that $\phi=\frac{1}{\sqrt{2}}(\eta+v+i \xi)$

Symmetry breaking

Local U(1) gauge symmetry

$$
\begin{aligned}
\mathscr{L}_{k i n} & =\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right) \\
& =\left(\partial_{\mu}+i e A_{\mu}\right) \phi^{*}\left(\partial^{\mu}-i e A^{\mu}\right) \phi \\
V= & \lambda v^{2} \eta^{2}+\ldots
\end{aligned}
$$

Symmetry breaking

Local U(1) gauge symmetry

$$
\begin{aligned}
\mathscr{L}_{k i n} & =\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right) \\
& =\left(\partial_{\mu}+i e A_{\mu}\right) \phi^{*}\left(\partial^{\mu}-i e A^{\mu}\right) \phi \quad \text { New terms } \\
V= & \lambda v^{2} \eta^{2}+\ldots \\
\mathscr{L}= & \frac{1}{2}\left(\partial_{\mu} \eta\right)^{2}-\lambda v^{2} \eta^{2}+\frac{1}{2}\left(\partial_{\mu} \xi\right)^{2}-\frac{1}{4}\left(F_{\mu \nu}\right)^{2}+\frac{1}{2} e^{2} v^{2} A_{\mu}^{2}-e v A_{\mu}\left(\partial^{\mu} \xi\right)+\ldots
\end{aligned}
$$

Symmetry breaking

Local U(1) gauge symmetry

$$
\begin{aligned}
\mathscr{L}_{k i n} & =\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right) \\
& =\left(\partial_{\mu}+i e A_{\mu}\right) \phi^{*}\left(\partial^{\mu}-i e A^{\mu}\right) \phi \quad \text { New terms } \\
V= & \lambda v^{2} \eta^{2}+\ldots \\
\mathscr{L}= & \frac{1}{2}\left(\partial_{\mu} \eta\right)^{2}-\lambda v^{2} \eta^{2}+\frac{1}{2}\left(\partial_{\mu} \xi\right)^{2}-\frac{1}{4}\left(F_{\mu \nu}\right)^{2}+\frac{1}{2} e^{2} v^{2} A_{\mu}^{2}-e v A_{\mu}\left(\partial^{\mu} \xi\right)+\ldots \\
& \text { Massive } \eta \quad \text { Massless } \xi \quad \text { Photon } \quad \text { Weird }
\end{aligned}
$$

Symmetry breaking

Local U(1) gauge symmetry

- The weird term complicates the interpretation of the Lagrangian
- Luckily there is a way around!
- Remember that the gauge fields are defined up to a (partial) derivative $A_{\mu}^{\prime} \rightarrow A_{\mu}+\frac{1}{e} \partial_{\mu} \alpha$, let us focus on the following three terms in \mathscr{L}
$\cdot \frac{1}{2}\left(\partial_{\mu} \xi\right)^{2}+\frac{1}{2} e^{2} v^{2} A_{\mu}^{2}-e v A_{\mu}\left(\partial^{\mu} \xi\right)=\frac{1}{2} e^{2} v^{2}\left(A_{\mu}-\frac{1}{e v}\left(\partial_{\mu} \xi\right)\right)^{2}$

Symmetry breaking

Local U(1) gauge symmetry

- Here we recognize a transformed gauge field with $\alpha=-\xi / v$, such that it becomes $\frac{1}{2} e^{2} v^{2}\left(A_{\mu}^{\prime}\right)^{2}$. This choice is called the unitary gauge
- The scalar field becomes $\phi^{\prime} \rightarrow e^{-i \frac{\xi}{v}} \phi=e^{-i \frac{\xi}{v}} \frac{1}{\sqrt{2}}(\eta+v+i \xi)$
expand the exponential as $e^{i \frac{\xi}{v}}=1+i \frac{\xi}{v}+O\left(\xi^{2}\right)$, then
$e^{-i \frac{\xi}{v}} \frac{1}{\sqrt{2}}(\eta+v+i \xi)=e^{-i \frac{\xi}{v}} \frac{1}{\sqrt{2}}(\eta+v) e^{i \frac{\xi}{v}}$, where we neglected the $O(\xi \eta)$ term
. Here we recognize η as the Higgs scalar field h, so $\phi^{\prime} \rightarrow \frac{1}{\sqrt{2}}(v+h)$

Symmetry breaking

Local U(1) gauge symmetry

$$
\begin{gathered}
\mathscr{L}=\frac{1}{2}\left(\partial_{\mu} h\right)^{2}-\lambda v^{2} h^{2}+\frac{1}{2} e^{2} v^{2} A_{\mu}^{2}+e^{2} v A_{\mu}^{2} h+\frac{1}{2} e^{2} A_{\mu}^{2} h^{2}-\lambda v h^{3}-\frac{1}{4} \lambda h^{4} \\
-\frac{1}{4} F_{\mu \nu}^{2}
\end{gathered}
$$

Symmetry breaking

Local U(1) gauge symmetry

$$
\begin{gathered}
\mathscr{L}=\frac{1}{2}\left(\partial_{\mu} h\right)^{2}-\lambda v^{2} h^{2}+\frac{1}{2} e^{2} v^{2} A_{\mu}^{2}+e^{2} v A_{\mu}^{2} h+\frac{1}{2} e^{2} A_{\mu}^{2} h^{2}-\lambda v h^{3}-\frac{1}{4} \lambda h^{4} \\
-\frac{1}{4} F_{\mu \nu}^{2}
\end{gathered}
$$

Massive h
Massive $\gamma \quad h-\gamma$ interactions
h self-
interactions

Symmetry breaking

Local U(1) gauge symmetry

- The gauge boson A_{μ} has eaten the Goldstone boson ξ to obtain a mass $m_{A}=e v$, this is the Higgs mechanism
- We identified interactions between the massive gauge boson and the massive Higgs scalar and also Higgs self-interactions

Take away message

- A spontaneously broken symmetry is broken in the true vacuum, but still present in the original Lagrangian
- Each broken global continuous symmetry results in a massless particle, Goldstone boson
- When breaking a local gauge symmetry, the Goldstone gets eaten by the gauge particle to become massive, Higgs mechanism

Extra: Superconductivity

Ginzburg-Landau model

- Near T_{C} with order parameter ϕ

$$
\mathscr{L}=-\frac{1}{4} F_{\mu \nu}^{2}+\left|D_{\mu} \phi\right|^{2}-m^{2}|\phi|^{2}-\frac{1}{4}|\phi|^{4} \quad \text { where } m^{2} \propto\left(T-T_{C}\right)
$$

- For $T<T_{C} \rightarrow$ abelian Higgs model, $\mathrm{U}(1)$ spontaneously broken
- Effective Lagrangian

$$
\mathscr{L}=-\frac{1}{4} F_{\mu \nu}^{2}+\frac{1}{2} m_{A}^{2} A_{\mu}^{2}
$$

Ginzburg-Landau model

. Current density $\vec{j}=-\frac{\partial \mathscr{L}}{\partial \vec{A}}=-m_{A}^{2} \vec{A}$, second London equation

- Also $\nabla \times \vec{j}=-m_{A}^{2} \nabla \times \vec{A}=-m_{A}^{2} \vec{B}$ and $\nabla \times \vec{B}=\vec{j}$
- Then

$$
\begin{aligned}
\nabla \times(\nabla \times \vec{B}) & =\nabla(\nabla \cdot \vec{B})-\nabla^{2} \vec{B} \\
=\nabla \times \vec{j} & =-m_{A}^{2} \vec{B}
\end{aligned}
$$

- Remember that $\nabla \cdot \vec{B}=0$

Ginzburg-Landau model

- First London equation $\left(m_{A}^{2}-\nabla^{2}\right) \vec{B}=0$
- For $m_{A}^{2} \neq 0$ there is no constant solution
- The Meissner effect: a superconductor cannot possess a magnetic field
- A solution

$$
\begin{gathered}
\vec{B}(x) \propto \vec{B}_{0} e^{-\frac{x}{\lambda}} \\
\lambda=\frac{1}{m_{A}}
\end{gathered}
$$

where λ is the penetration depth

