
Avanish & Solange

Informal intro SSB/Higgs 
mechanism
Topical Lectures June 2020



First of all..



Feel free to ask questions!



Index

• Shortcomings of EW model


• Breaking a global continuous symmetry


• Breaking a local continuous symmetry 



Literature

• Based mostly on “Particle Physics 1” by Marcel Merk, Ivo van Vulpen and Wouter 
Hulsbergen


• “Quantum Field Theory and the Standard Model” by Matthew D. Schwartz (modern 
and very comprehensive) 
 
Also useful to learn more on QFT:


• “Quantum Field Theory” by Mark Srednicki (self consistent modular format)


• “An Introduction to Quantum Field Theory” by Peskin and Schroeder (classic)


• “The Quantum Theory of Fields (vol. I, II and III)” by Weinberg (sacred scripts of a 
theorist)



Shortcomings Electroweak Model

• Massive gauge bosons are forbidden


• Massive fermions are forbidden in EW theory


• Unitarity violations  



Forbidden massive gauge bosons 

• QED is locally gauge invariant: 
the Lagrangian is invariant under    U(1)


• To this end we introduced the covariant derivative  and vector field  
(gauge boson/photon field): 

ϕ′� → eiα(x)ϕ

Dμ Aμ

∂μ → Dμ − ieAμ, A′�μ → Aμ +
1
e

∂μα

ℒQED = ℒfree + ℒint + ℒMaxwell



Forbidden massive gauge bosons 

• QED is locally gauge invariant: 
the Lagrangian is invariant under    U(1)


• To this end we introduced the covariant derivative  and vector field  
(gauge boson/photon field): 

ϕ′� → eiα(x)ϕ

Dμ Aμ

∂μ → Dμ − ieAμ, A′�μ → Aμ +
1
e

∂μα

ℒQED = ℒfree + ℒint + ℒMaxwell

Propagation of e



Forbidden massive gauge bosons 

• QED is locally gauge invariant: 
the Lagrangian is invariant under    U(1)


• To this end we introduced the covariant derivative  and vector field  
(gauge boson/photon field): 

ϕ′� → eiα(x)ϕ

Dμ Aμ

∂μ → Dμ − ieAμ, A′�μ → Aμ +
1
e

∂μα

ℒQED = ℒfree + ℒint + ℒMaxwell

Propagation of e Interaction 2  and e γ



Forbidden massive gauge bosons 

• QED is locally gauge invariant: 
the Lagrangian is invariant under    U(1)


• To this end we introduced the covariant derivative  and vector field  
(gauge boson/photon field): 

ϕ′� → eiα(x)ϕ

Dμ Aμ

∂μ → Dμ − ieAμ, A′�μ → Aμ +
1
e

∂μα

ℒQED = ℒfree + ℒint + ℒMaxwell

Propagation of e Interaction 2  and e γ Maxwell eqs in vacuum 



Forbidden massive gauge bosons 

• Notice that the  is massless (no mass term in the Lagrangian)


• So let’s add one?  




• We require this Lagrangian to be locally U(1) invariant, but is it?

γ

ℒnew
QED = ℒQED +

1
2

m2
γ AμAμ

1
2

m2
γ AμAμ =

1
2

m2
γ (Aμ +

1
e

∂μα) (Aμ +
1
e

∂μα) ≠
1
2

m2
γ AμAμ



Forbidden massive gauge bosons 

• Thus we see that massive gauge bosons aren’t allowed in QED


• This is fine for photons 


• Similar arguments hold for EW theory, where we know that the W and Z 
bosons are massive!


• Spontaneous symmetry breaking (SSB) will fix this!



Forbidden massive fermions in EW

• EW requires covariant derivatives of the form  




• Here, isospin singlets ( ) and doublets ( ) transform as  

Dμ = ∂μ +
ig
2

⃗τ ⋅ ⃗Wμ +
ig′ �

2
YBμ

ψR ψL
ψ′�R → eiβ(x)YψR

ψ′�L → eiα(x)T+iβ(x)YψL



Forbidden massive fermions in EW

• A mass term expressed in helicity states would be 

 

 

since , with 


• After applying the transformations from the previous slide, we don’t obtain the 
same mass term :-(


• Spontaneous symmetry breaking will fix this!

−mf ψ̄ψ = − mf (ψ̄R + ψ̄L) (ψL + ψR)
= − mf (ψ̄RψL + ψ̄LψR)

ψ̄iψi =
1
4

ψ̄ (1 − (γ5)2) ψ = 0 i = R or L and  (γ5)2 = 1



Unitarity violations 

• Say the W and Z obtained masses through SSB. Let’s consider 
; three contributing diagrams:σ (W+

L ZL → W+
L ZL)

+ +



Unitarity violations 

• Resulting in an amplitude  

• Perturbative unitarity bounds violated at , meaning that we 
cannot use perturbative QFT (i.e. Feynman rules) above this scale


• Including the Higgs exchange diagram,  
this behavior is exactly canceled: 

ℳ ∝
E2

CM

m2
W

+ O(1)

ECM ≈ 2.5 TeV

ℳh ∝ −
E2

CM

m2
W

+ O(1)



Excited? Let’s get into it!



But first… a Lagrangian 
mechanics refresher 



Lagrangian Mechanics 
Field equations 

• 


•
Euler-Lagrange e.o.m.  for each type 


• Klein-Gordon  from 


• Dirac eq  from 

ℒ = T (kin) − V (pot)

d
dt

∂ℒ
∂qi

∂t

−
∂ℒ
∂qi

= 0 i

(∂μ∂μ + m2) ϕ = 0 ℒ =
1
2 (∂μϕ)(∂μϕ) −

1
2

m2ϕ2

(iγμ∂μ − m) ψ = 0 ℒ = iψ̄γμ∂μψ − mψ̄ψ



Lagrangian Mechanics 
Terminology 

• 


• First term is the kinetic term 


•  is irrelevant if one considers the EL equations, thus can be neglected 


•  terms are absent, since the vacua of the potentials are usually located at 
 or the fields are shifted to force this


•  is the mass term


• All higher order terms are interaction terms 

ℒ = ∂μϕ∂μϕ + a0 + a1ϕ + a2ϕ2 + a3ϕ3 + . . .

a0

a1
⟨ϕ⟩ = 0

a2



Symmetry breaking 
Simple model 

•



• Two things to notice: 
1. Symmetric under  

2. Potential has extrema at 


• The first extremum holds for all , the latter for 

ℒ =
1
2 (∂μϕ)

2
− V (ϕ)

=
1
2 (∂μϕ)

2
−

1
2

μ2ϕ2 −
1
4

λϕ4

ϕ → − ϕ

|ϕ0 | = 0 ∨ |ϕ0 | =
−μ2

λ

μ μ2 < 0



Symmetry breaking 
Simple model 

• In perturbative QFT we treat the fields  as perturbations around a stable 
minimum , called the vacuum


• For  the vacuum lies at , thus it was  
justified to put 

ϕ
|ϕ0 |

μ2 > 0 |ϕ0 | = 0
a1 = 0



Symmetry breaking 
Simple model 

• In perturbative QFT we treat the fields  as perturbations around a stable 
minimum , called the vacuum


• For  the vacuum lies at , thus it was  
justified to put 


• For  we have an unstable maximum at  

and stable minima at 

ϕ
|ϕ0 |

μ2 > 0 |ϕ0 | = 0
a1 = 0

μ2 < 0 |ϕ0 | = 0

|ϕ0 | =
−μ2

λ



Symmetry breaking 
Simple model 

• Let us pick the vacuum to be 


• Shift the fields by this constant ,  
such that 

ϕ0 =
−μ2

λ
≡ v

η = ϕ − v
η0 = 0



Symmetry breaking 
Simple model 







ℒkin =
1
2 (∂μ (η + v) ∂μ (η + v)) =

1
2 (∂μη)

2

V =
μ2

2 (η + v)2 +
λ
4 (η + v)4

= λv2η2 + λvη3 +
1
4

λη4 −
1
4

λv4

ℒfull =
1
2 (∂μη)

2
− λv2η2 − λvη3 −

1
4

λη4 +
1
4

λv4



Symmetry breaking 
Simple model 


ℒfull =
1
2 (∂μη)

2
− λv2η2 − λvη3 −

1
4

λη4 +
1
4

λv4

• Second term determines the mass:  

remember that , thus the mass is positive


• Lagrangian for massive scalar particle with interactions 


• No symmetry in , although  still present in original Lagrangian. In 
other words, the symmetry is broken in the vacuum, but still present in the original 
theory: Spontaneous Symmetry Breaking 

1
2

m2
η = λv2 → mη = 2λv2 = −2μ2

μ2 < 0

η → − η ϕ → − ϕ



Symmetry breaking 
U(1) global symmetry

• Let’s alter the model by adding a complex scalar field 




• Respects a U(1) global symmetry 


• In terms of components 

ϕ =
1

2
(ϕ1 + iϕ2)

ℒ = (∂μϕ)*(∂μϕ) − μ2 (ϕ*ϕ) − λ (ϕ*ϕ)2

ϕ′� → eiαϕ

ℒ =
1
2 (∂μϕ1)

2
+

1
2 (∂μϕ2)

2
−

1
2

μ2 (ϕ2
1 + ϕ2

2) −
1
4

λ (ϕ2
1 + ϕ2

2)2



Let us play the same game



Symmetry breaking 
U(1) global symmetry

• Extremal values of the potential at 
 




• As in the previous case, the first minimum is the vacuum for  and it is 
an unstable extremum for 


• However, the second minimum now corresponds to an infinite amount of 
vacua for  constrained to the value of 

2 |ϕ0 | = ϕ2
1 + ϕ2

2 = 0 ∨ 2 |ϕ0 | = ± ϕ2
1 + ϕ2

2 = ± −μ2

λ
≡ ± v

μ2 > 0
μ2 < 0

μ2 < 0 v



Symmetry breaking 
U(1) global symmetry

ℒ =
1
2 (∂μϕ1)

2
−

1
2

μ2ϕ2
1 +

1
2 (∂μϕ2)

2
−

1
2

μ2ϕ2
2 + ℒint

Particle 1 with mass μ Particle 2 with mass μ

μ2 > 0

Single vacuum at (0,0)



Symmetry breaking 
U(1) global symmetry μ2 < 0

Infinite vacua constrained to ϕ2
1 + ϕ2

2 =
−μ2

λ
≡ v

Unstable extremum at (0,0)

Choose a vacuum state  as ϕ0 ϕ1 = v ∧ ϕ2 = 0



Symmetry breaking 
U(1) global symmetry

• Let us shift the fields again to have  
a zero vacuum expectation value: 

 and  such that 




• Subsequently we want to express our Lagrangian 
in terms of the shifted fields 

η = ϕ1 − v ξ = ϕ2

ϕ =
1

2
(η + v + iξ)

μ2 < 0



Symmetry breaking 
U(1) global symmetry μ2 < 0


ℒkin =
1
2 (∂μ (η + v − iξ) ∂μ (η + v + iξ)) =

1
2 (∂μη)

2
+

1
2 (∂μξ)

2

V = −
1
4

λv4 + λv2η2 + λvη3 +
1
4

λη4 +
1
4

λξ4 + λvηξ2 +
1
2

λη2ξ2



Symmetry breaking 
U(1) global symmetry μ2 < 0


ℒkin =
1
2 (∂μ (η + v − iξ) ∂μ (η + v + iξ)) =

1
2 (∂μη)

2
+

1
2 (∂μξ)

2

V = −
1
4

λv4 + λv2η2 + λvη3 +
1
4

λη4 +
1
4

λξ4 + λvηξ2 +
1
2

λη2ξ2

Massive scalar particle  with mass η
mη = 2λv2 = −2μ2 > 0



Symmetry breaking 
U(1) global symmetry μ2 < 0


ℒkin =
1
2 (∂μ (η + v − iξ) ∂μ (η + v + iξ)) =

1
2 (∂μη)

2
+

1
2 (∂μξ)

2

V = −
1
4

λv4 + λv2η2 + λvη3 +
1
4

λη4 +
1
4

λξ4 + λvηξ2 +
1
2

λη2ξ2

Massive scalar particle  with mass η
mη = 2λv2 = −2μ2 > 0 Massless scalar particle ξ



Symmetry breaking 
U(1) global symmetry

• The vacuum is not U(1) invariant anymore, no  invariance 


• At leading order a shift in  as  leaves the Lagrangian invariant


• Can be shown that this is a symmetry at all orders if we were to parametrize 
the vacuum differently,  for constants 


• This is a remnant of the global U(1) symmetry and the massless spin-zero 
particle  is the Goldstone boson 


• Each spontaneously broken continuous global symmetry implies the existence 
of a massless particle (Goldstone boson)

η′� → eiαη

ξ ξ′� → ξ + α

ϕ = (v + c1η) eic2ξ c1 and c2

ξ



Symmetry breaking 
U(1) global symmetry

The Mexican hat potential: expansions around the minimum with  > 0 
correspond to radial excitations ( ), = 0 corresponds to excitations 
around the symmetry direction where the potential is flat ( ). 


m2

η m2

ξ



So what about local gauge 
symmetries?



Symmetry breaking
Local U(1) gauge symmetry

• Lagrangian invariant under  


• To this end we introduced the covariant derivative  and vector field  
(gauge boson/photon field): 

ϕ′� → eiα(x)ϕ

Dμ Aμ

∂μ → Dμ − ieAμ, A′�μ → Aμ +
1
e

∂μα

ℒQED = (Dμϕ)†(Dμϕ) −
1
4

F2
μν − μ2 (ϕ*ϕ) − λ (ϕ*ϕ)2



Symmetry breaking
Local U(1) gauge symmetry

•  is the same as in the previous model, but with an additional massless 
photon


• For  we again obtain an infinite amount of vacua, bounded as 




• Define shifted fields as usual, such that 

μ2 > 0

μ2 < 0

ϕ2
1 + ϕ2

2 =
−μ2

λ
≡ v2

ϕ =
1

2
(η + v + iξ)



Symmetry breaking
Local U(1) gauge symmetry

ℒkin = (Dμϕ)†(Dμϕ)
= (∂μ + ieAμ)ϕ*(∂μ − ieAμ)ϕ

New terms

V = λv2η2 + . . .



Symmetry breaking
Local U(1) gauge symmetry

ℒkin = (Dμϕ)†(Dμϕ)
= (∂μ + ieAμ)ϕ*(∂μ − ieAμ)ϕ

New terms

V = λv2η2 + . . .

ℒ =
1
2 (∂μη)

2
− λv2η2 +

1
2 (∂μξ)

2
−

1
4 (Fμν)

2
+

1
2

e2v2A2
μ − evAμ (∂μξ) + . . .



Symmetry breaking
Local U(1) gauge symmetry

ℒkin = (Dμϕ)†(Dμϕ)
= (∂μ + ieAμ)ϕ*(∂μ − ieAμ)ϕ

New terms

V = λv2η2 + . . .

ℒ =
1
2 (∂μη)

2
− λv2η2 +

1
2 (∂μξ)

2
−

1
4 (Fμν)

2
+

1
2

e2v2A2
μ − evAμ (∂μξ) + . . .

Massive η Massless ξ Photon Weird



Symmetry breaking
Local U(1) gauge symmetry

• The weird term complicates the interpretation of the Lagrangian


• Luckily there is a way around!


• Remember that the gauge fields are defined up to a (partial) derivative 

, let us focus on the following three terms in 


•

A′�μ → Aμ +
1
e

∂μα ℒ

1
2 (∂μξ)

2
+

1
2

e2v2A2
μ − evAμ (∂μξ) =

1
2

e2v2 (Aμ −
1
ev (∂μξ))

2



Symmetry breaking
Local U(1) gauge symmetry

• Here we recognize a transformed gauge field with , such that it becomes . 
This choice is called the unitary gauge 

• The scalar field becomes  

expand the exponential as , then 

, where we neglected the  term


• Here we recognize  as the Higgs scalar field , so 

α = − ξ/v
1
2

e2v2 (A′�μ)
2

ϕ′� → e−i ξ
v ϕ = e−i ξ

v
1

2
(η + v + iξ)

ei ξ
v = 1 + i

ξ
v

+ O(ξ2)

e−i ξ
v

1

2
(η + v + iξ) = e−i ξ

v
1

2
(η + v) ei ξ

v O(ξη)

η h ϕ′� →
1

2
(v + h)



Symmetry breaking
Local U(1) gauge symmetry

ℒ =
1
2 (∂μh)

2
− λv2h2 +

1
2

e2v2A2
μ + e2vA2

μh +
1
2

e2A2
μh2 − λvh3 −

1
4

λh4

−
1
4

F2
μν



Symmetry breaking
Local U(1) gauge symmetry

ℒ =
1
2 (∂μh)

2
− λv2h2 +

1
2

e2v2A2
μ + e2vA2

μh +
1
2

e2A2
μh2 − λvh3 −

1
4

λh4

Massive h Massive γ  interactionsh − γ  self- 
interactions
h

−
1
4

F2
μν



Symmetry breaking
Local U(1) gauge symmetry

• The gauge boson  has eaten the Goldstone boson  to obtain a mass 
, this is the Higgs mechanism 


• We identified interactions between the massive gauge boson and the massive 
Higgs scalar and also Higgs self-interactions 

Aμ ξ
mA = ev



Take away message

• A spontaneously broken symmetry is broken in the true vacuum, but still 
present in the original Lagrangian


• Each broken global continuous symmetry results in a massless particle, 
Goldstone boson 

• When breaking a local gauge symmetry, the Goldstone gets eaten by the 
gauge particle to become massive, Higgs mechanism 



Extra: Superconductivity



Ginzburg-Landau model

• Near  with order parameter  

      where 


• For abelian Higgs model, U(1) spontaneously broken


• Effective Lagrangian 
 

TC ϕ
ℒ = −

1
4

F2
μν + |Dμϕ |2 − m2 |ϕ |2 −

1
4

|ϕ |4 m2 ∝ (T − TC)

T < TC →

ℒ = −
1
4

F2
μν +

1
2

m2
AA2

μ



Ginzburg-Landau model

• Current density , second London equation


• Also  and 


• Then 
 

                 


• Remember that 

⃗j = −
∂ℒ

∂ ⃗A
= − m2

A
⃗A

∇ × ⃗j = − m2
A∇ × ⃗A = − m2

A
⃗B ∇ × ⃗B = ⃗j

∇ × (∇ × ⃗B ) = ∇(∇ ⋅ ⃗B ) − ∇2 ⃗B

= ∇ × ⃗j = − m2
A

⃗B

∇ ⋅ ⃗B = 0



Ginzburg-Landau model

• First London equation 


• For  there is no constant solution


• The Meissner effect: a superconductor cannot  
possess a magnetic field


• A solution  

                       

 
where  is the penetration depth


(m2
A − ∇2) ⃗B = 0

m2
A ≠ 0

⃗B (x) ∝ ⃗B 0e− x
λ

λ =
1

mA

λ


