Measuring the Higgs Width at the ICC

Aleksandra, Anamika, Anna, Brian, Jordy, Thijs

What is the Higgs Width?!

Natural width of Higgs

- Unstable particle → Breit-Wigner mass shape
- Width is related to life-time $\Gamma = 1/\tau$
- SM predicted width: ~ 4 MeV

Why do we want to measure it?

• The total width is affected by all Higgs decays, also the ones we cannot measure:

- Enters in all Branching Ratios.
- Any new Higgs decay (e.g. into Dark Matter) will enhance the width.

Attempts to measure it

From theory....

...to experiment! Events / 2 GeV $\Gamma = 1/\tau$ (g² – m²)² + m²Г² 4 MeV O(GeV Experimental Resolution $q^2 = m^2$ m_{ai} (GeV)

- Direct measurements (at the LHC) limited by resolution [factor 1000 missing]
- Indirect measurement can get close (but assumptions!)

Can we measure the width in a model independent way?

Higgs production at ILC

- International Linear Collider
- e+ e- Higgs factory with CM energy √s of
 250 GeV (500 GeV upgrade possible)
- Possibility to polarize beams (e.g. to enhance cross-sections)
- Main Higgs production mechanisms:

Higgs-strahlung (Zh) e⁺ Z

What does ILC bring to the picture?

- Knowledge of initial CM energy [we don't have this at the LHC!]
- Allows to measure the Higgs without looking at its decay products (from 4-momentum conservation)

Is this enough to measure the width?

No, <u>direct measurement</u> is still limited by detector resolution to O(GeV) [same as for LHC]

But then, what did we gain?

We can perform indirect measurements without assumptions!

But then, what did we gain?

Exclusive final states (a la LHC)

rate
$$\sim g_{HZZ}^2 \times \frac{g_{Haa}^2}{\Gamma_H}$$

Inclusive final states (new at ILC)

rate
$$\sim g_{HZZ}^2$$

Measure g_{HZZ} and g_{Haa} and infer Γ_H from ratio of the two rates

Simplest case: Use H-ZZ decay mode

But then, what did we gain?

Exclusive final states (a la LHC)

Inclusive final states (new at ILC)

rate $\sim g_{HZZ}^2$

Can measure g_{H77} model indep.ly and infer Γ_H from ratio of the two rates

But...

H→ZZ BR is tiny (2.6%, not yet requiring leptons) — limited statistics, high unc.!

Idea: Use H → WW [higher BR of 21.4%]

How to **actually** measure the width?

Getting g_{HWW}

this we know from the inclusive measurement

Putting it together

Which precision can we achieve?

- 1.) ILC @ 250 GeV
 2/ab luminosity [O(15y) running]
 → 3.9% precision
- 2.) + ILC @ 500 GeV

 assuming 4/ab additional lumi

 higher W-fusion cross-section
 - → **1.7%** precision

Backup

Precision estimates

	ILC250		+ILC500	
	κ fit	EFT fit	κ fit	EFT fit
g(hbb)	1.8	1.1	0.60	0.58
g(hcc)	2.4	1.9	1.2	1.2
g(hgg)	2.2	1.7	0.97	0.95
g(hWW)	1.8	0.67	0.40	0.34
g(h au au)	1.9	1.2	0.80	0.74
g(hZZ)	0.38	0.68	0.30	0.35
$g(h\gamma\gamma)$	1.1	1.2	1.0	1.0
$g(h\mu\mu)$	5.6	5.6	5.1	5.1
$g(h\gamma Z)$	16	6.6	16	2.6
$\overline{g(hbb)/g(hWW)}$	0.88	0.86	0.47	0.46
g(h au au)/g(hWW)	1.0	1.0	0.65	0.65
g(hWW)/g(hZZ)	1.7	0.07	0.26	0.05
Γ_h	3.9	2.5	1.7	1.6
$BR(h \to inv)$	0.32	0.32	0.29	0.29
$BR(h \to other)$	1.6	1.6	1.3	1.2

LHC & Higgs width

- Famous discovery of Higgs boson in 2012
- Measurement difficulties: relatively small mass resolution
- Direct strategies
 - Convolution experimental mass resolution and natural width
 - Γ_{H} < 2.6 GeV (<u>ATLAS</u>), Γ_{H} < 1.1 GeV (<u>CMS</u>) 95% CL
 - From lifetime
 - \blacksquare $\Gamma_{\sqcup} > 3.5 \text{ e-3 eV } (\underline{\text{CMS}}) 95\% \text{ CL}$

Γ_{..}< 1.1 GeV (CMS)

LHC & Higgs width

 Indirect strategy Higgs decay: on-shell / off-shell

$$\sigma_{
m on} \sim \int rac{{
m d}s}{(s-m_Z^2)^2 + \Gamma_Z^2 m_Z^2} \propto rac{1}{\Gamma_Z}$$

$$\sigma_{
m off} \sim \int_{s\gg m_Z^2} rac{{
m d}s}{(s-m_Z^2)^2 + \Gamma_Z^2 m_Z^2} \qquad \Gamma \propto 0$$

CMS result [3]