Unlocking the Invisible

Rasa Muller, Rahul Balasubramanian, Mauricio Feo, Federica Pasquali, Robbert Geertsema, Christos Stylianidis

The Invisible Universe

- Existence of Dark matter has been proved by many experiments
- Rich Phenomenology (BSM):
 Dark Matter Particles, axion-like particles
- Higgs-Portal models: SM Higgs acts as a mediator between the SM and the hidden DM sector
- No direct invisible Higgs decay in the SM,
 SM Higgs decay with similar signature (H > ZZ > vvvv)
 very small (0.1%)

Invisible Higgs Decay

- Does the Higgs couple directly to dark matter particles?
- For 2 x DM candidate mass < SM Higgs mass
 Direct decay of Higgs into DM particles
- Two possible ways to experimentally probe BSM decays of Higgs,
 - Measure known Higgs decays precisely
 - **Direct searches** for invisible Higgs decays

Phys. Rev. D 101 (2020) 012002

Candidate in signal region of $H \to \chi \bar{\chi}$ with two VBF jets ($m_{jj} = 3.6$ TeV)

Longitudinal view

Perspective x-y view

Latest ATLAS Sensitivity

- Main sensitivity to invisible decays comes from VBF Higgs production
- Experimental signature of signal:
 - Pair of quark jets with wide pseudorapidity* gap
 - missing transverse momentum signature of O(100 GeV) - decay
- observed (expected) upper limit of BR(H->inv) 0.13 (0.13) at 95 % CL

^{*} pseudorapidity = angle of a particle relative to the beam axis

Future accelerator: Timeline

DEFINITION EX

EXCAVATION / BUILDINGS

High Luminosity LHC setup

Instantaneous luminosity = # collisions per bunch crossing

- ⇒ HL-LHC factor ~5 more inst. luminosity
- upgrades to make more collisions (LHC)
- upgrades to detect more collisions (experiments, next slide)
- 1) Different superconductors for reaching >12T
 - a) Needed to free up space around the experiments
 - b) Better focusing
- 2) Increasing number of protons per bunch
- 3) Crab cavities

Weak points:

- Pile-up... (hadron-hadron collisions)
- vacuum degradation -> fake background

Detector Upgrades

Increased luminosity -> more collisions per bunch crossing -> more interactions with the detectors

Need for upgrades in the experiments, main points:

- Higher detector occupancy
 - Higher bandwidth
 - Increased radiation damage
 - Increased single event upsets
 - Faster algorithms

Solutions:

- 4D tracking (add timing detectors)
- Designing radiation hard devices
- Larger server farms better connections

Design and test of new detectors already started for several experiments

Gain in sensitivity

- Pileup mitigation technique not only will maintain but possibly improve MET performance
- Improved Lepton identification & pileup jet rejection
- HL-LHC An leap in an order of magnitude for sensitivity,
 BR(inv.) < 0.025 at 95% CL for ATLAS+CMS HL-LHC
- Gain in sensitivity for BR(inv.) along with precise measurements of SM Higgs decay further improve our understanding of BSM Higgs decays BR(BSM)

HL-LHC sensitivity to Dark Matter

 Higgs-portal model is an attractive option to test signatures of New Physics in collider and direct detection environments

Thank you for your attention

https://higgsfilm.com/ https://www.youtube.com/watch?v=o8o GA9v0P4

Papers

- Latest iteration of Higgs coupling measurements (ATLAS)
 https://cds.cern.ch/record/2688596/files/scoap3-fulltext.pdf
 Aad, G., Abbott, B., Abbott, D. C., Abdinov, O., Abud, A. A.,
 Abeling, K., ... & Abramowicz, H. (2020). Combined
 measurements of Higgs boson production and decay using up to
 80 fb- 1 of proton-proton collision data at s= 13 TeV collected with
 the ATLAS experiment. *Physical Review D*, 101(1), 012002.
- Combined search for H to inv (ATLAS) https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.122.231801 Aaboud, M., Aad, G., Abbott, B., Abbott, D. C., Abdinov, O., Abud, A. A., ... & Abramowicz, H. (2019). Combination of searches for invisible Higgs boson decays with the ATLAS experiment. *Physical review letters*, 122(23), 231801.
- Higgs Physics at HL-LHC https://arxiv.org/pdf/1902.00134.pdf
 Cepeda, M., Gori, S., Ilten, P., Kado, M., Riva, F., Khalek, R. A., ...
 & Asawatangtrakuldee, C. (2019). Higgs physics at the HL-LHC and HE-LHC. arXiv preprint arXiv:1902.00134.
- https://arxiv.org/pdf/2003.01662.pdf
 Wang, K., & Zhu, J. (2020). Funnel annihilations of light dark matter and the invisible decay of the Higgs boson. *Physical Review D*, 101(9), 095028.

References

Presentations:

- Input to the update of the European Strategy for Particle Physics 2018-2020: The physics potential of HL-LHC https://indico.cern.ch/event/765096/contributions/3295995/attachments/1785339/2906404/HLLHC.pdf
- Higgs@HL-LHC brief summary of the Higgs chapter of the HL-LHC Yellow report
 https://indico.cern.ch/event/787473/contributions/3280723/attachments/1780373/2896465/SummaryHiggsHLLHC.pdf
- Invisible decays of the Higgs boson at the HL-LHC: experimental overview
 https://indico.cern.ch/event/756370/contributions/3185631/attachm ents/1739204/2814044/magnan hinvftr 181023.pdf
- Doug Schafer's talk contains the latest ATLAS measurements for VBF H-> inv.
 https://indico.cern.ch/event/868253/attachments/2023520/338421
 - (for instance on slide 31 and 32 has info on comparison of the measurement to other experiments

2/vbf cern phys seminar.pdf

Bonus - Signal Region Definition

Events entering the signal region (SR) must satisfy the following requirements:

- · The event contains no lepton candidate, nor a photon.
- The leading and sub-leading jets have p_T > 80 GeV and 50 GeV, respectively. Both jets need to fulfil
 JVT or fJVT requirements indicating that they are stemming from the hard scattering process.
- The event contains two, three or four jets with $p_T > 25$ GeV.
- To ensure orthogonality to other searches, it is required that not more than one of the jets are b-tagged.
 The fraction of events removed by this requirement is less than 0.02% because most of the jets are outside the acceptance of the tracking detector.
- In the case of a third (i = j3) or fourth (i = j4) jet, the centrality of the additional jets must fulfil $C_i < 0.6$; for each of those jets m_i^{rel} has to be small: $m_i^{\text{rel}} < 0.05$.
- The event has $E_{\rm T}^{\rm miss} > 200$ GeV, which strongly suppresses the multijet background.
- The soft track term of the E_T^{miss} is less than 20 GeV. This requirement removes W → μν in which
 the muon is not identified but reconstructed as a track. It further removes events from strong V+jets
 processes in a similar way like a veto on a third jet, which has such a low p_T that it is included in the
 soft track term.
- Further suppression of the multijet background is achieved by requiring $H_{\rm T}^{\rm miss} > 180$ GeV.
- The leading two jets are not back-to-back: $\Delta \phi_{\rm jj} < 2.0$.
- The leading two jets lie in opposite longitudinal hemispheres: $\eta^{j1} \cdot \eta^{j2} < 0$ and are well separated in η : $\Delta \eta_{jj} > 3.8$.
- The invariant mass of the leading two jets is large: $m_{jj} > 0.8 \text{ TeV}$.

Figure 2: Schematic view of the eleven bins in the signal region. The shading indicates the signal to background ratio and a darker grey corresponds to a higher value. The percentage gives the distribution of signal from invisibly decaying Higgs bosons to each of the bins.

Bonus - Post-fit plots

Higgs Invisible

Connection between Higgs & Dark Matter

Run2 Limit ~20% @ 95%CL (in both experiments sensitivity dominated by the VBF channel)

From the global coupling fit, if $B_{BSM} \ge 0$ (any invisible or undetected states): $B_{BSM} < 2.5\%$ @ 95% CL

Prospects of direct searches @ 14TeV:

VH: ATLAS, 2013: <8% @ 95%CL VBF: CMS, 2018: <3.8% @ 95%CL

In the VBF case: full reoptimization of the analysis at 200PU to handle the impact of PU in MET

M. Gepeda (CIEMAT)