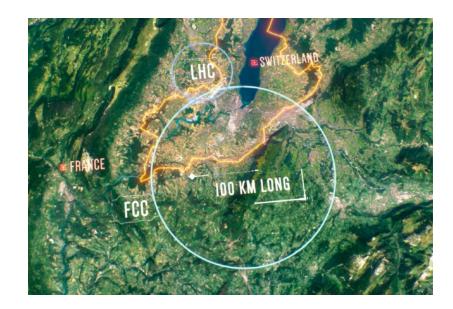


Rob Walet, Alice Alfonsi, Polina Moskvitina, Bouke Jung, Lennart van Doremalen

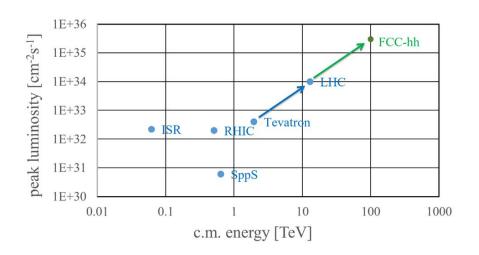

-Nikhef topical lecture project-

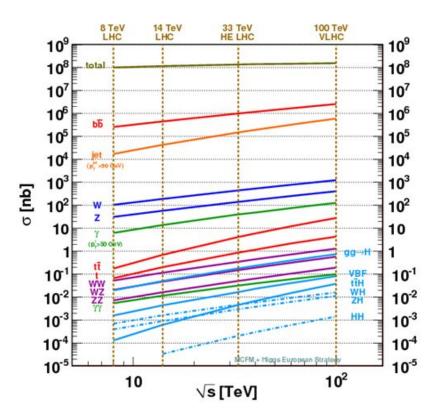
The FCC accelerator

Exploring new physics

- DM, neutrino masses, baryon symmetry of the universe
- Higgs properties, (self)interactions, couplings and flavor phenomena

The FCC accelerator

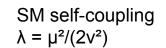

Specifications

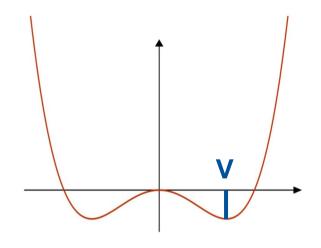

Higgs statistics >10¹⁰ Higgs bosons

Peak luminosity 30 x 10³⁴ cm⁻²s⁻¹

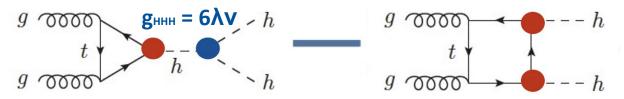
• Construction 2035-2050

• Operation 25 years




Higgs self-coupling

 EW symmetry breaking incorporated in the SM via the symmetric potential of a doublet Higgs field

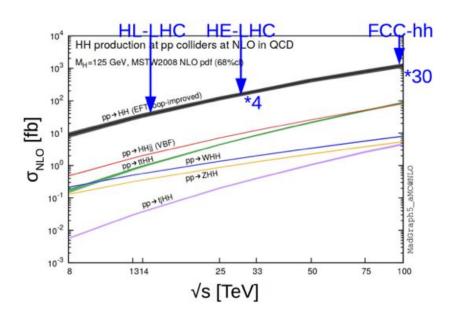

$$V_{SM}(H) = -\mu^2 |H|^2 + \lambda |H|^4$$
 "Arbitrary terms"

- The shape of the SM Higgs potential is directly correlated to Higgs self-coupling
- Any deviation from SM λ value gives hints on new physics
 - Theories with additional scalar particles (e.g. SUSY)
 - Theories with higher-dimension operators in the Higgs potential (composite Higgs models)

Higgs self-coupling at FCC-hh

Negative interference with box diagram

- very small cross-section
- interference lower at low di-higgs invariant mass

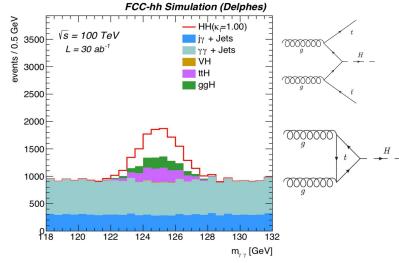

HL-LHC expected precision: $\delta k_{\lambda} / k_{\lambda} \approx 50\%$

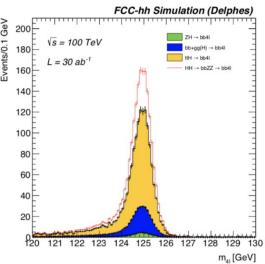
Huge increase of production at FCC-hh

- σ (100 TeV) / σ (14 TeV) \approx 40
- L (FCC-hh) / L (HL-LHC) ≅ 10

Various channels are studied:

- bbyy most sensitive channel
- bbZZ(4l) new channel at FCC-hh
- And more: 4b+j boosted, bbττ

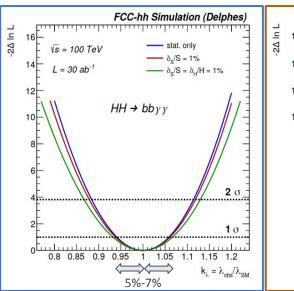

How do we measure it?

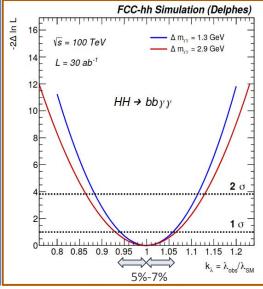

HH → bbyy

- Large QCD backgrounds (jjγγ and γ+jets)
- Very large ttH background with respect to LHC
- Perform a 2D Likelihood fit in (m_{χχ}, m_{hh}) plane to determine coupling modifier k_λ
- Precision of this channel $\delta k_{\lambda} / k_{\lambda} = 5-7\%$

HH → bb4l

- New channel available at FCC-hh
- Clean channel, mostly reducible single Higgs background
- Utilize a simple cut and count approach
 (4e, 4µ and 2e2µ channels)
- Precision: $\delta k_{\lambda} / k_{\lambda} = 15-20\%$

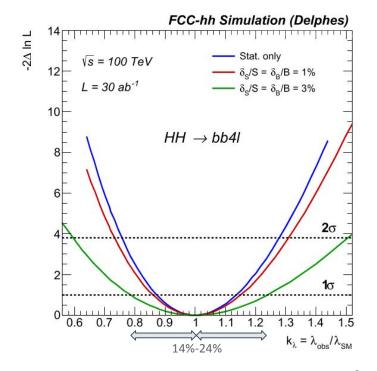



Higgs self-coupling uncertainties

- Each channel comes with specific systematic uncertainties, typically:
 - a. Identification efficiencies
 - b. Resolutions

HH → bbyy

- Di-photon invariant mass, △myy
 - Set by EM calorimeter E-resolution
 - Mainly influenced by pile-ups
 - Timing info + photon clustering expected to yield large improvements
- Other uncertainties:
 - b/y-tagging efficiencies
 - mis-identifications



Higgs self-coupling uncertainties

- Each channel comes with specific systematic uncertainties, typically:
 - a. Identification efficiencies
 - b. Resolutions

HH → bbZZ (4I)

- Uncertainties driven by the efficiency of background cuts, specifically on:
 - B-pair and Z-candidate invariant masses
 - Lepton-pair and b-jets angular separation
 - Lepton transverse momenta

Summary

- Higgs self-coupling ties directly to the shape of the Higgs potential!
- Can be studied directly via Higgs-pair production
 - Large destructive interference between top-quark loop and self-coupling diagrams
 - Suppresses SM rate, but enhances SM deviations at NLO
 - Self-coupling diagram contribution greatest at low invariant Higgs-pair masses
- Most promising decay-channels include at least one b-pair:
 - \circ HH \rightarrow bbyy
 - \circ HH \rightarrow bbZZ (4I)
- With the right techniques, few % level precision on κ_{λ} can be achieved!

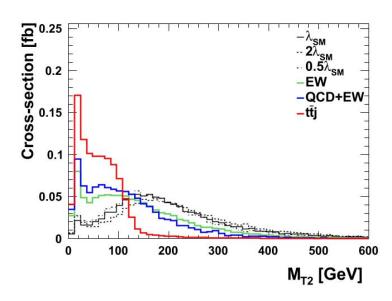
	b̄bγγ	$bar{b} au au$	$b\bar{b}ZZ^*[\rightarrow 4\ell]$	$b\bar{b}WW^*[\rightarrow 2j\ell\nu]$	4b+jet
$\delta \kappa_{\lambda}$	6%	8%	14%	40%	30%

Send-off message

15 years of LHC statistics in just one day!

Comparison in the Higgs production via the $qq \rightarrow Zh$ channel During a 10 hour working day the LHC produces ~20 Higgs particles where the FCC-hh produces 108.000 Higgs particles during a single day.

Thank you for your attention!


Who dares to ask a question?

EXTRA

HH→ bbtt

- Boosted final state (high Higgs-pair invariant mass)
 - Generally causes reduced sensitivity to K,
 - Higgs-pair production in association with a jet provides leeway
 - Jet-induced recoil decorrelates p_{T,h} and m_{hh}
 - Retains high self-coupling sensitivity, whilst keeping p_{T,h} large
- 3 dominant backgrounds
 - \circ ttj with leptonic decays (t \rightarrow bW \rightarrow blv)
 - Pure EW backgrounds
 - Mixed QCD-EW backgrounds from jbb**tt**

- Using state-of-the-art reconstruction techniques, ~8% precision on κ_{λ} can be achieved!
 - tt BG elimination based on kinematic bounding variables (arXiv:1309.6318v1)
 - BDT analysis for maximal S vs. BG discrimination despite low S/BG ratio (arXiv:1712.08895v2)
 - Jet substructure reconstruction technique (arXiv:0802.2470v2)