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The Fermi bubbles (su+ 2010)

Height: ~50 deg (~10kpc)
E,~ 1-100 GeV

oLy~ 4x10%7 erg/s

- Symmetric about the GC
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The Fermi bubbles (su+ 2010)
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Fermi (Gamma-ray) ROSAT (X-ray)




X-ray map at 1.5 keV by ROSAT (snowden+ 1997)




X-ray map at 1.5 keV by ROSAT (snowden+ 1997)

Haslam (408 MHz)




The eRosita bubbles (0.6-1.0 keV)
(Predehl et al., 2020, Nature, 588, 227)




Outline

** What do we know about the Fermi bubbles observationally?

** What do we know about the Fermi bubbles theoretically?

¢ What does the new eRosita data tell us about the origin of the bubbles?




‘Mu[ﬁ-messenger observations




Gamma-ray bubbles by Fermi (su+ 2010)
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Gamma-ray bubbles by Fermi — 50 months (ackermann+ 2014)

Gamma-ray spectrum with latitudes
Residual intensity, £ = 10 — 500 GeV e N
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¢ Spatially uniform hard spectrum with spectral index of -2
s High-E cutoff at ~110 GeV



Microwave haze by WMAP & Planck

(Finkbeiner 2004, Dobler+ 2008; Planck Collaboration 2012)

o Spatially coincident with
= the gamma-ray bubbles &
g hard spectrum




X-ray map at 1.5 keV by ROSAT (snowden+ 1997)

X-ray cavities suggest
underdense bubbles

Arc features correlated
with bubble edges
(B/and-Hawthorn+03)



TeV gamma-ray non-detection by HAWC (abeysekara+ 2017)
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s Upper limits above 1 TeV

¢ Purely hadronic models extending to
PeV ranges disfavored



Neutrino events near the Fermi bubbles by IceCube

(Lunardini+ 2014, 2015, Ahlers+ 2014, 2016, Taylor+ 2014, Aartsen+ 2015, Fang+ 2017,
Sherf+ 2017, IceCube Collaboration 2020)

Estimated qux by Fang+17 & Sherf+17
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A schematic view
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What is the origin of the bubbles?

(see review by KY, Ruszkowski & Zweibel 2018)



What is the origin of the bubbles?

(see review by KY, Ruszkowski & Zweibel 2018)

Q1: What are the emission mechanisms?
*** Leptonic (CRe)
+*»* Hadronic (CRp)



What is the origin of the bubbles?

(see review by KY, Ruszkowski & Zweibel 2018)

Q1: What are the emission mechanisms?
¢ Leptonic (CRe)
+*»* Hadronic (CRp)

Q2: What activity at the GC triggers the event?
** Nuclear star formation (NSF)
¢ Active galactic nucleus (AGN)



What is the origin of the bubbles?

(see review by KY, Ruszkowski & Zweibel 2018)

Q1: What are the emission mechanisms?
¢ Leptonic (CRe)
+*»* Hadronic (CRp)

Q2: What activity at the GC triggers the event?
** Nuclear star formation (NSF)
¢ Active galactic nucleus (AGN)

Q3: Where are the CRs produced?
** Transported from GC
¢ In-situ acceleration (shocks or turbulence)



Theoretical Models




Theoretical Models

I. Hadronic winds
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Theoretical Models

I. Hadronic winds
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Theoretical Models

I. Hadronic winds

Il. Leptonic jets
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Theoretical Models

I. Hadronic winds

Il. Leptonic jets lll. In-situ acceleration
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Theoretical Models

Il. Leptonic jets

lll. In-situ acceleration

l. HadrcMmds

> Incon5|stent with
HAWC/IceCube data

» Unable to fit the
microwave haze spectrum
(Ackerman+2014)
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Il. Leptonic jet models ’ ?‘\
(Guo+ 2011, 2012, KY+ 2012, 2013, 2017, Barkov+ 2013) f\f/a
/? \\
Gamma-ray spectrum 'e 4 E'
— 107°f €
> AGN jets of speed ~thousands to 10*km/s | 5 | Ibi=30-50 deg.
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l1l. In-situ acceleration models Assumed B &

(Mertsch+2018)
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** Assume CRe are injected at the shock

and accelerated by turbulence in the
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+* Spatially uniform gamma-ray spectrum
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Lejotonic jets or in-situ acceleration?




Theoretical Models

Il. Leptonic jets
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Theoretical Models

Il. Leptonic jets
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Theoretical Models
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X-ray map at 1.5 keV by ROSAT (snowden+ 1997)




X-ray map at 0.6-1.0 keV by eRosita
(Predehl et al., 2020, Nature, 588, 227)




X-ray map at 0.6-1.0 keV by eRosita + Gamma-ray by Fermi
(Predehl et al., 2020, Nature, 588, 227)




X-ray map at 0.6-1.0 keV by eRosita + Gamma-ray by Fermi
(Predehl et al., 2020, Nature, 588, 227)

, 8 cRosita bubbles: forward shock
g Fermi bubbles: contact discontinuity
They are not the same!!




Simulating the Fermi bubble spectrum

¢ Implemented MHD+CRSPEC module in FLASH
¢ Injection spectrum: 10 GeV ~ 10 TeV
¢ IC & syn. cooling (due to Galactic radiation & B field)

¢ X-ray from Bremsstrahlung of thermal gas; gamma-
ray/microwave from leptonic CRs
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All X-ray/gamma/microwave data are matched!
Yang et al. (2022), Nature Astronomy (http://arxiv.org/abs/2203.02526)

“Fermi/eRosita
bubbles as relics of
past activity of the
Galactic black hole”
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Fermi and eROSITA bubbles as relics of the past activity of the Galaxy’s central black hole
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Image credits: ESA/Gaia/DPAC, CC BY-SA 3.0 IGO, NASA




All X-ray/gamma/microwave data are matched!
Yang et al. (2022), Nature Astronomy (http://arxiv.org/abs/2203.02526)

What we’ve learned from the simulations:
s Jets occurred ~2.6 Myr ago
s Jets were active for 0.1 Myr
s Inferred Eddington ratio ~1-10%



lonization cone in the Magellanic Stream
(Bland-Hawthorn et al. 2013, 2019)

» Enhanced Ha, CIV/CII, Si IV/Si Il suggest past Seyfert flare activity
» Inferred Eddington ratio ~ 1-10%
» Inferred age ~ 3.5 +- 1 Myr



Summary

* The multi-wavelength observations of the Fermi/eRosita bubbles are likely
caused by a single outburst of jet activity of Sgr A*

%* The inferred age of ~2.6 Myr and Eddington ratio ~1-10% are consistent
~ with enhanced ionization in the Magellanic Stream, pointing to a Seyfert-
flare activity of Sgr A*




Multi-wavelength leptonic emission
from aging galaxy bubbles

(Owen & Yang, 2022, MNRAS, 510, 5834)

Ellis Owen

. (CICA Fellow,
‘¢ A few dozens may be observable by SKA NTHU)

*** Radio emission drops relatively slowly

logy, [v/Hz]
171 190 208 226 244 263

* GeV & TeV emission
die out quickly

¢ Only a few
observable by CTA
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. Galactic winds .

Cluster radio halos




