Multi-Messenger Emission of TDEs

ECRS / 28 July, 2022 / Simeon Reusch

Image credit: DESY / Science Communication Lab

Motivation, Follow-Up Program

What are Tidal Disruption Events?

AT2019dsg and AT2019fdr

Dust Echoes + AT2019aalc

ECRS Nijmegen / Simeon Reusch, 28 July 2022

AGNs, SNRs, GRBs...

Gamma rays They point to their sources, but they can be absorbed and are created by multiple emission mechanisms.

Neutrinos

are deflected by magnetic fields.

D

ECRS Nijmegen / Simeon Reusch, 28 July 2022

black

holes

Neutrinos point back the sources of cosmic rays!

Earth

ж.

air shower

Detecting neutrinos is HARD

ECRS Nijmegen / Simeon Reusch, 28 July 2022

Event view of IceCube-170922

Identifying their sources too!

Cosmic high-energy neutrino flux first detected by IceCube (2013)

First compelling source: Gammaray blazar TXS 0506+056 (2017) At least 70% of flux: unknown origin

Aartsen et. al. (2015, ApJ), IceCube (2018, Science)

Neutrinos as messengers

ECRS Nijmegen / Simeon Reusch, 28 July 2022

Image credits: Caltech

Our Follow-Up Program

IceCube

Slack alert

Additional observations

AMPEL filtering

ECRS Nijmegen / Simeon Reusch, 28 July 2022

Almost robotic triggering

ZTF observations

Our Follow-Up Program

What are Tidal Disruption Events (TDEs)?

Star approaches **SMBH**

Bright for months!

ECRS Nijmegen / Simeon Reusch, 28 July 2022

Star is ripped apart by tidal forces

Star debris gets partially accreted

Image credit: DESY / Science Communication Lab

8/26

ASASSN-14li: van Velzen et al. (2016, Science)

ASASSN-14li: van Velzen et al. (2016, Science)

AT2019dsg: First TDE-neutrino association

AT2019fdr: Second TDE-neutrino association

Nuclear flare, very (!) long-lived Host: AGN (NLSy1) **SLSN origin was debated** z = 0.267 $M_{\rm SMBH} = 10^{7.55 \pm 0.13} M_{\odot}$

ECRS Nijmegen / Simeon Reusch, 28 July 2022

Reusch et. al. (2022, Phys. Rev. Lett.)

AT2019fdr: Second TDE neutrino association

ECRS Nijmegen / Simeon Reusch, 28 July 2022

Radio observations (VLA)

Stein et. al. (2021, Nature Astronomy), Reusch et. al. (2022, Phys. Rev. Lett.) 12/26

X-ray observations (SRG/eROSITA) **Detected on the third visit**

Soft spectrum

ECRS Nijmegen / Simeon Reusch, 28 July 2022

Temperature fit: 71 eV

AT2019fdr neutrino spectra

TDEs suggested as sources of HE neutrinos:

ECRS Nijmegen / Simeon Reusch, 28 July 2022

Dai & Fang (2017, MNRAS) Hayasaki & Yamazaki (2019, ApJ) Winter & Lunardini (2017, Phys. Rev. D)

Hayasaki (2021, Nat. Astron.), Reusch et. al. (2022, Phys. Rev. Lett.)

14/26

Luminosity comparison

Luminosity of AT2019fdr much higher

Flux comparison

But comparable flux on earth

Comparison

	AT2019dsg	
TDE	yes	
Peak Luminosity	$3.5 \times 10^{44} \mathrm{erg}\mathrm{s}^{-1}$	
SMBH Mass	$10^6 - 10^{6.7} M_{\odot}$	
Radio	evolving	
UV	very bright	
X-ray	early, soft spectrum	
Dust echo	very strong	
Neutrino delay	~ 5 months	
nu production?	yes	

ECRS Nijmegen / Simeon Reusch, 28 July 2022

AT2019fdr

likely

 $1.3 \times 10^{45} \,\mathrm{erg} \,\mathrm{s}^{-1}$

 $10^{7.55\pm0.13} M_{\odot}$

non-evolving

bright

late, soft spectrum

strong

~ 10 months

yes

Combined population:

Confirmed TDEs + accretion flares

Brightness + rise/fade-time cuts

Combined chance coincidence: $p = 3.44 \times 10^{-4} (3.4 \sigma)$

Image credit: DESY / Science Communication Lab •

Dust echo

AT2019fdr

$$R \sim 0.16 \text{ pc}$$

$$L_{\text{opt}} \sim 1.4 \times 10^{45} \text{ erg s}^{-1}$$
Covering factor: $L_{\text{opt}}/L_{\text{dust}} \sim 33$

AT2019fdr

ECRS Nijmegen / Simeon Reusch, 28 July 2022

) had a record-breaking dust echo

) also has a strong dust echo

AT2019aalc: A third association

Systematic search for coincidence between IceCube public alerts and optical flares that show post-peak neoWISE infrared flares

van Velzen et. al. (2021, submitted to Science)

All have strong dust echo All have soft X-ray spectrum All were detected in radio

ECRS Nijmegen / Simeon Reusch, 28 July 2022

20/26

Luminosity comparison

Flux comparison

Comparison				
	AT2019dsg	AT2019fdr	AT2019aalc	
TDE	yes	likely	<u> </u>	
Peak Luminosity	$3.5 \times 10^{44} \mathrm{erg} \mathrm{s}^{-1}$	$1.3 \times 10^{45} \mathrm{erg} \mathrm{s}^{-1}$?	
SMBH Mass	$10^6 - 10^{6.7} M_{\odot}$	$10^{7.55\pm0.13} M_{\odot}$	$10^{7.2} \ M_{\odot}$	
Radio	evolving	non-evolving	detected	
UV	very bright	bright	?	
X-ray	early, soft spectrum	late, soft spectrum	soft spectrum	
Dust echo	very strong	strong	very strong	
Neutrino delay	~ 5 months	~ 10 months	~ 5 months	
nu production?	yes	yes	?	

 $p = 2 \times 10^{-4} (3.7 \sigma)$

Maybe they are a unified population

van Velzen et. al. (2021, submitted to Science)

Conclusion

These three associated events could produce a (>7%)

"Normal" AGN outshine TDEs by a two orders of magnitude, we should be dominated by those

—> very efficient neutrino production in TDEs?

ECRS Nijmegen / Simeon Reusch, 28 July 2022

significant part of the IceCube high-energy neutrino flux

Stacking Analysis

Systematic stacking analysis of dust-echo sample led by Jannis **Necker (DESY)**

Same source sample as study above, but + **low-energy neutrinos**

ECRS Nijmegen / Simeon Reusch, 28 July 2022

Jannis will give a talk at **TeVPA** about this

Well, the universe will (hopefully) tell us more

Continue realtime followup!

Systematic study of "nuclear" ZTF sample + IR WISE sample

LSST looming on the horizon

ECRS Nijmegen / Simeon Reusch, 28 July 2022

Image Credit: Rubin Observatory

Summary

Follow-up campaign ongoing since over 3 years

- $p = 2 \times 10^{-4} (3.7 \sigma)$, based only on IR properties

