Neutron Stars as Axion Laboratories

Samuel J. Witte

Based on (incomplete sample of relevant works...):

Pshirkov (2009) Hook, Kahn, Safdi, Sun (2018) **SJW**, Noordhuis, Edwards, Weniger (2021), Battye, Garbrecht, McDonald, Srinivasan (2021), Foster, **SJW**, Lawson, Linden, Gajjar, Weniger, Safdi (2022), Prabhu (2021), Noordhuis, Prabhu, **SJW**, Weniger, Chen, Cruz (To appear soon), Noordhuis, Prabhu, **SJW**, Weniger (To appear soon) + (many more)...

Animations available at: <u>https://github.com/SamWitte/GIF_Storage</u>

UNIVERSITY OF AMSTERDAM

ECRS (Nijmegen, NL)

July 29, 2022

Brief intro to axions

CD Axion

• Pseudo Goldstone boson introduced to solve strong CP problem

Why does QCD conserve CP (charge-parity) symmetry?

<u>At low energies, two new parameters:</u> m_a and f_a

• Effectively a one parameter theory (or family of 1 parameter theories) Characterized by mass m_a or decay constant f_a

Excellent dark matter candidates

Axion-like particles

• Pseudo Goldstone bosons, **do not** solve strong CP problem

Generically expect O(100s) of light axions in high energy theories (e.g. string theory)

• Two parameter theory (mass m_a and decay constant f_a uncorrelated)

Axion-photon mixing

 $\mathcal{L} \sim g_{a\gamma\gamma} \ a \ E \cdot B$ $p_{a \to \gamma} \sim g_{a \gamma \gamma}^2 B^2 L^2$

B: Magnetic Field L: Length scale

Requirements for large conversion probability of axions into photons:

- *B* must be large
- L must be large: for mildly-relativistic to non-relativistic axions, $L \sim (k_a k_{\gamma})^{-1}$

In vacuum, $k_a \ll k_{\gamma}$ **Modify photon dispersion relation** (E.g. in a cold plasma $k_{\gamma} = \sqrt{\omega^2 - \omega_p^2}$, and $k_a \sim k_{\gamma}$ possible)

Ideal environments: Large coherent magnetic fields and dilute plasmas

Neutron star magnetospheres

Axion parameter space

Samuel J. Witte (GRAPPA / Amsterdam)

Image credit: Ciaran O'hare

Neutron stars as axion labs

dark matter

Samuel J. Witte (GRAPPA / Amsterdam)

<u>Part 1</u>: Resonant production of radio photons from axion

Part 2: Sourcing axions from the vacuum gap collapse

7

Radio Photons from Axion Dark Matter (abridged):

Pshirkov & Popov (2009), Huang et al (2018), Hook et al(2018), Safdi et al (2018), Battye et al (2020), Leroy et al (2020), Foster et al (2020), Buckley et al (2020), Edwards et al (2019), Edwards et al (2020), Darling (2020), Prabhu et al (2020), Witte et al (2021), Battye et al (2021), Millar et al (2021), Buckley et al (2021), Foster et **al (2022)** (many more...)

Photon

Observing the galactic center with the Green Bank Telescope

Survey Details:

- **Telescope:** Green Bank Telescope, 100m Single Dish
- **Observation Frequency:** 4–8 GHz [C band]

- **Observation Time:** ~4.6 hours
- **Observation Strategy:** On/off target

Data courtesy of the Breakthrough Listen Initiative

GBT observations of galactic center

Foster, SJW, Lawson, Linden, Gajjar, Weniger, Safdi (2022)

Neutron star population modeling

How do we predict what Galactic Center neutron star population looks like?

Lets focus for now on the young neutron star population

- Star formation rates + stellar mass distributions \rightarrow neutron star formation rate
- Spatial distribution of stars is tracer for spatial distribution of neutron stars

Do et al (2013), Lu et al (2013), Yusef-Zadeh (2017)

Gives predictions: $n_{NS}(\vec{r})$ and $p(t_{NS-birth})$

Construct $p(P, B_0, \theta_m | t_{age})$ by simulating magnetorotational spin-down, and fitting to observed population

GBT observations of galactic center

Foster, SJW, Lawson, Linden, Gajjar, Weniger, Safdi (2022)

Photon production from axion dark matter

Step 1: Define plasma structure of magnetosphere

Resonant Conversion

Location: $m_a \sim \omega_p$ Efficiency: $\propto (\partial_x \omega_p)^{-1}$

Animations available at: <u>https://github.com/SamWitte/GIF_Storage</u>

Photon production from axion dark matter

 $m_a = 10.0 \mu eV$

Smaller axion mass \rightarrow resonant surface is larger Larger axion mass \rightarrow resonant surface is smaller

Animations available at: <u>https://github.com/SamWitte/GIF_Storage</u>

Ray tracing

Step 2: Axion phase space to photon flux

SJW, Noordhuis, Edwards, Weniger (2021) Animations available at: <u>https://github.com/SamWitte/GIF_Storage</u>

Ray tracing allows for:

- Accurate mapping of radio flux
- Line broadening effects
- Path-dependent absorption

Final Photon Position

~ 500 meters

Stacked signal

Step 3: Generating the axion 'forest'

GBT axion search

Fiducial Model (Maximally Conservative)

Future prospects

Improvements:

- Better understanding of axion-photon mixing
- Exploit time / frequency domain information
- Better telescopes

. . . .

Foster, SJW, Lawson, Linden, Gajjar, Weniger, Safdi (2022)

Neutron stars as axion labs

dark matter

Part 2: Sourcing axions from the vacuum gap collapse

Samuel J. Witte (GRAPPA / Amsterdam)

Part 1: Resonant production of radio photons from axion

Vacuum gap collapse

Relativistic axion population

Noordhuis, Prabhu, SJW, Chen, Cruz (To appear) Plot made using cajohare.github.io/AxionLimits/

Conclusions

Neutron stars offer powerful and rich laboratory in which to probe axion physics

Axion Dark Matter

- *Look for*: Radio lines from smooth dark matter distribution
- *Look for*: Transient lines from minicluster and axion star encounters (extragalactic / cosmological)

(Axions need not be dark matter)

- *Look for*: smooth radio flux from relativistic axions produced in polar caps
- *Look for*: Narrow lines from dense axion clouds bound to the neutron star

This is a quickly evolving field with enormous discovery potential!

Axions from gap collapse

Photons

Axions

Noordhuis, Prabhu, SJW, Chen, Cruz (To appear)

Resonant Conversion (relativistic limit) $\omega_p \sim m_a / \sin \theta_{\hat{k} \cdot \hat{B}}$

Tracking axion-photon conversion

Step 2: Axion phase space to photon flux

Non-adiabatic: SJW, Noordhuis, Edwards, Weniger (2021) Adiabatic: Thjemsland, **SJW**, McDonald (To appear)

Samuel J. Witte (GRAPPA / Amsterdam)

Inefficient conversion

Efficient conversion

Radio signal from isolated neutron star

Neutron star population modeling

What about the properties of these neutron stars?

We want conditional probability: $p(P, B_0, \theta_m | t_{age})$

Well-measured quantities:

- Rotational period *P*
- Spin-down rate \dot{P}
- $B_0 \propto \sqrt{P\dot{P}}$

Values today...

• $\theta_m(t_{\text{birth}})$ random, and evolution known

Adopt initial distributions, simulate evolutionary tracks, and fit to the distributions we observe today

Philippov, Tchekhovskoy, Li (2014) Gullón et al (2014)

Samuel J. Witte (GRAPPA / Amsterdam)

 10^{0}

Period (s)

Transient radio lines from axion miniclusters

Rare encounters of miniclusters/stars with neutron stars generate transient radio lines

Density field at matter-radiation equality

SJW, Salinas, Baum, Lawson, Millar, Marsh, Weniger (To appear) Agrawal, Johsnon, Edwards, Kavanaguh, Marsh, Ransom, Shroyer, Visinelli, SJW, Weniger (Data analysis ongoing)

The taxonomy of axion transients

Samuel J. Witte (GRAPPA / Amsterdam)

Future prospects

Improvement needed from theory...

(e.g. Axion-photon mixing)

Foster, SJW, Lawson, Linden, Gajjar, Weniger, Safdi (2022)

Samuel J. Witte (GRAPPA / Amsterdam)

+ experiment...

(e.g. better telescopes, time domain information)

Bound state profiles

Future outlook

Uncertainties & Systematics

Uncertainties of the magnetosphere

Image credit: Bransgrove & Beloborodov

Novel Observables

Samuel J. Witte (GRAPPA / Amsterdam)

The strong CP problem

Why does QCD seem to conserve charge-parity (CP) symmetry?

Current limit: $\overline{\theta} \le 5 \times 10^{-11}$

A solution to the strong CP problem: axions

Solution: Introduce goldstone boson a with parameter f_a to make theta term dynamical

Samuel J. Witte (GRAPPA / Amsterdam)

$$\mathcal{L}_{\theta} = -\left(\overline{\theta} + \frac{a}{f_a}\right) \frac{g^2}{32\pi^2} G_{\mu\nu} \tilde{G}^{\mu\nu}$$

QCD generates a potential for the axion:

$$V(a) \sim \Lambda_{QCD}^4 \left(\overline{\theta} + \frac{a}{f_a}\right)^2$$

Peccei & Quinn (1977), Weinberg (1978), Wilczek (1978)

Properties of the QCD axion

Axion Mass:

 $m_a \sim \frac{\Lambda_{QCD}^2}{f_a}$

Axion-like particles (ALPs)

ALPs do not solve strong CP problem, but naturally emerge in String Theory from compactification

Axion dark matter

Requirements for dark matter:

- Cosmologically stable True for all light (viable) axions
- Production mechanism (cold / pressureless)

See e.g. Turner (1986)

Samuel J. Witte (GRAPPA / Amsterdam)

Decays of Topological Defects

- (Defects only produced when $T_{PQ} \ll T_{Reheat}$)
- $\Omega_{cdm} \sim ??$
- Seeds of axion miniclusters

See e.g. Buschmann et al (2021), Gorghetto et al (2020)

Photon production

Foster, SJW, Lawson, Linden, Gajjar, Weniger, Safdi (2021) Tjemsland, SJW, McDonald (To appear)

Non-adiabatic limit

(Inefficient conversion)

$$p_{a \to a} \sim 1$$
$$p_{a \to \gamma} \sim \epsilon$$

Adiabatic limit:

(Efficient conversion)

$$p_{a \to a} \sim e^{-x}, \ x \gg 1$$

 $p_{a \to \gamma} \sim 1$

Thjemsland, SJW, McDonald (To appear)

Adiabatic Conversion

Foster, SJW, Lawson, Linden, Gajjar, Weniger, Safdi (arXiv: 2022.08274)

CERN, Cosmo Coffee

March 9, 2022

Plasma Distribution in Magnetospheres

CERN, Cosmo Coffee

March 9, 2022

Magnetosphere Axisymmetric Rotator

Image credit: Bransgrove & Beloborodov

CERN, Cosmo Coffee

March 9, 2022

Analytic estimates of L ~ 100 m

The Problem of Time...

CERN, Cosmo Coffee

March 9, 2022

Frequency

Neutron star population modeling

How are they distributed?

Young population:

• Stellar distribution

Old population:

• Numerical simulations of the dynamics, in-fall, and capture

Generozov et al (2018)

How do we view each NS?

• Marginalize

How many are there?

Young population:

- Star formation + stellar mass distribution Old population:
- Globular cluster infall, mass segregation, in situ star formation

What are their properties?

- •Use models to spin-down each pulsar and decay magnetic field
- Fit initial distributions to observed populations

Radio Telescope Sensitivity

Radiometer Equation:

$$S/N \propto \sqrt{\Delta t/\Delta f}$$

Idealized Searches:

- More Time
- Narrower Line

Tradeoff between looking for brightest neutron star and exploiting the entirety of the signal

Start MJD	Fields	Calibrator	Test pulsars	Total On Source Time (min)
58702.20313657	A00,C01,C07	3C295	B0355+54, J1744–1134	40
58704.99252314	A00,B01–B06,C01–C12	3C286	B1133+16, J1744-1134	285
58733.98109953	A00	3C286	B2021 + 51	28
58734.95761574	A00	_	_	60
58737.95781249	A00	3C286	B2021 + 51	258

CERN, Cosmo Coffee

		Š				
	A Or	Start MJD	Fields	Calibrator	Test pulsars	Total On Source Time (min)
	er X	58702.20313657	A00,C01,C07	3C295	B0355+54, J1744-1134	40
ect	×	58704.99252314	A00,B01–B06,C01–C12	3C286	B1133+16, J1744-1134	285
\$	19	58733.98109953	A00	3C286	B2021 + 51	28
	NO'X	58734.95761574	A00	_	_	60
في	,	58737.95781249	A00	3C286	B2021 + 51	258
$\dot{2}^{0}$	_					

CERN, Cosmo Coffee

March 9, 2022

Use parametric modeling and Gaussian processes to model smooth background

Foster, SJW, Lawson, Linden, Gajjar, Weniger, Safdi (arXiv: 2022.08274)

Signal Injection Tests

Analysis framework leads limits with proper coverage and can recover injected signals

CERN, Cosmo Coffee

CERN, Cosmo Coffee

March 9, 2022

Foster, SJW, Lawson, Linden, Gajjar, Weniger, Safdi (arXiv: 2022.08274)

Foster, SJW, Lawson, Linden, Gajjar, Weniger, Safdi (arXiv: 2022.08274)

SJW, Noordhuis, Edwards, Weniger (2021)

CERN, Cosmo Coffee

March 9, 2022

Axion-Photon Conversion (2D)

Photon (out)

Axion (in)

SJW, Noordhuis, Edwards, Weniger (2021)

CERN, Cosmo Coffee

March 9, 2022

CERN, Cosmo Coffee

March 9, 2022

Photon Absorption

SJW, Noordhuis, Edwards, Weniger (2021)

Minicluster Infall

-6

 \log_1

Samuel J. Witte (GRAPPA / Amsterdam)

$$_{0}\left(R_{i}/R_{\mathrm{tot}}
ight)$$

-1.5

Neutron star population modeling

Quenching of bound state growth

Absorption in Neutron Star:

Noordhuis, Prabhu, SJW (To appear)

Back-reaction on vacuum gap:

Caputo, SJW, Phillipov (In progress)

NS

$$aNN \to NN$$

 $\Gamma_{\rm abs,eff} = \Gamma_{\rm abs} \left(1 - e^{-E/T}\right) \sim \left(\frac{E}{T}\right) \Gamma$

Absorption heavily suppressed in low energy limit

$$\nabla \cdot \vec{E} = \rho - g_{a\gamma\gamma} \vec{B} \cdot \nabla a$$

Large axion cloud can modify the plasma dynamics that drive production

$$\rho_{\max}^{br}(g_{a\gamma\gamma}, z = R_{\rm NS})$$

Bound state profiles

Quenching of bound state growth

Noordhuis, Prabhu, **SJW** (To appear)

Samuel J. Witte (GRAPPA / Amsterdam)

Image credit: Chen, Cruz, Spitskovski

Image credit: Cerutti & Beloborodov

EM Modes

Foster, SJW, Lawson, Linden, Gajjar, Weniger, Safdi (arXiv: 2022.08274)

Fast Magnetic Field Decay

Dominated by young neutron stars

"Data driven approach"

~1500 NSs [Age < 30 Myr in inner pc]

Samuel J. Witte (GRAPPA / Amsterdam)

Slow Magnetic Field Decay

Both young and old neutron stars contribute

Population Modeling

300,000 NSs inner few pcs

Transient radio lines

- Axion miniclusters (axion stars) form in post-inflationary scenario
- Periodic encounters of miniclusters/stars with neutron stars generate transient radio lines

Reference properties: $M_{\rm AMC} \sim 10^{-12} M_{\odot}$, $R_{\rm AMC}$ *Reference properties:* $M_{\rm AS} \sim 10^{-13} M_{\odot}$, $R_{\rm AS} \sim 10^4$ km, $\tau \sim$ seconds

Density field at matter-radiation equality

~
$$10^9$$
 km, τ ~ [hours – years]
 10^4 km. τ ~ seconds

Ellis et al (2022)

Transient radio lines (Pipeline)

SJW, Salinas, Baum, Lawson, Millar, Marsh, Weniger (To appear) Agrawal, Johsnon, Edwards, Kavanaguh, Marsh, Ransom, Shroyer, Visinelli, SJW, Weniger (Data analysis ongoing)

Samuel J. Witte (GRAPPA / Amsterdam)

star population

Axion dark matter

 $10^{-7} \,\mathrm{eV} \lesssim m_a \lesssim 10^{-4} \,\mathrm{eV}$

Axion dark matter

Topological Defects

$$\Omega_{cdm} = \Omega_{mis-mech} + \Omega_{strings} + \Omega_{DW}$$
e calculated

Can be exactly

Industry of computationally expensive simulations

See e.g. Buschmann et al (2021), Gorghetto et al (2020)

Current Expectation for QCD axion: $26 \,\mu \mathrm{eV} \lesssim m_a \lesssim 10^{-3} \,\mathrm{eV}$

$\mathcal{O}(1)$ density perturbations seeds axion miniclusters

Observational signature

As Viewed from Earth

Neutron star rotation changes location of photon over time

Bound states

Time: 0.0002 seconds

Axion production rate constant over ~ Myr timescales (Assuming one can neglect axion cloud)

Noordhuis, Prabhu, SJW (To appear)

Samuel J. Witte (GRAPPA / Amsterdam)

0.006 seconds

0.05 seconds

