

Extensive survey of NM databases with source recommendation list

Pauli Väisänen¹ Ilya Usoskin^{1,2} Kalevi Mursula¹ pauli.vaisanen@oulu.fi

¹ Space Physics and Astronomy Research Unit, University of Oulu, Finland

² Sodankylä Geophysical Observatory, (University of Oulu), Finland

Introduction

Neutron monitor (NM) measurements are used to study the variations of galactic cosmic ray (GCR) fluxes.

NM can especially be used to study SEP/flare-induced ground level enhancement (GLE) events and CME or CIR –induced Forbush decreases.

Sources for NM datasets include:

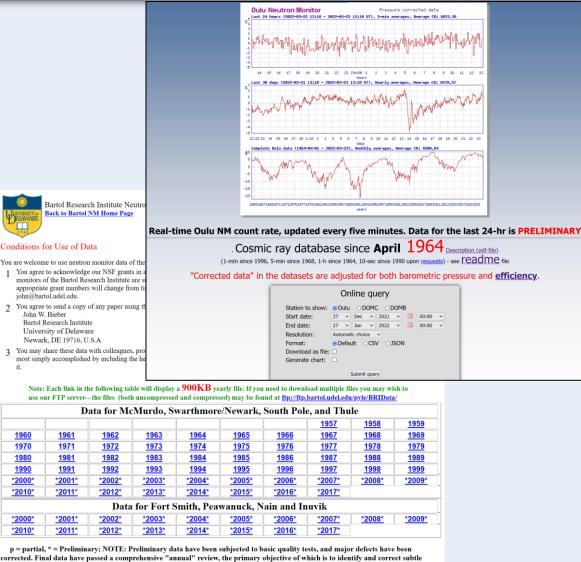
- 1. Station or institute homepages or other services
- 2. The Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation (IZMIRAN)
- 3. World Data Center for Cosmic Rays (WDCCR)
- 4. the Neutron Monitor Database (NMDB),

All statistics and results correspond to the situation in 2020

Data repository	Available stations	Recommended sources	Secondary sources
<u>NMDB (1h)</u>	53	29	10
<u>NMDB (revori)</u>	51	3	2
WDCCR	138	59	24
IZMIRAN	81	50	18
Polar Geophys. Inst.	1	1	
<u>Bartol Inst</u> .	8	5	3
Jungfraujoch NM	2	0	2
Lomnický Štit NM	1	1	
Mexico NM	1	0	1
<u>Oulu NM</u>	3	3	
South African stations	5	2	2
<u>Yakutsk + Tixie Bay</u>	2	0	0

Total unique stations: 147

Overview of sources - Stations



Many NM stations or operating institutes have their own web service or FTP for their data.

Notes:

- Many stations have different systems for obtaining data with individual restrictions.
- In many cases, stations have focused on the NM databases for distributing data, so their own services might be depreciated
- For example, Bartol institution's FTP service is only available up to 2017.

corrected. Final data have passed a comprehensive "annual" review, the primary objective of which is to identify and correct subtle anomalies and long-term changes in detector efficiency, barometer accuracy, etc. We encourage other researchers to use preliminary data in scientific analyses, as we do,while bearing in mind that adjustments (usually small) may eventually be made.

The Bartol Research Institute neutron monitor program is supported by the United States National Science Foundation under grants ANT-0739620 and ANT-0838839, and by the University of Delaware Department of Physics and Astronomy and the Bartol Research Institute.

This page revised 13 April 2011 Back to Bartol NM Home Page

Overview of sources - NMDB

The NMDB was established in 2008 as a part of a European Union funded project (FP7 Program) to create a modern database of NM data, including real-time updates (Mavromichalaki et al., <u>2011</u>).

Originally, it was built on mostly European NMs, but data from several non-European stations have been added later. In total, NMDB has data folders.

NMDB has three data tables for data:

"**ori**" (original) table contains first upload of data to NMDB. "**revori**" (revised original) contains updated data at the highest resolution, usually 1 min.

"1h" (1-hour validated) contains data at 1-hour resolution

Notes:

- Data from these three tables might not be the same!
- When using NEST, the system might automatically decreases the resolution (e.g., from 1 h to 1 month) for too long queries.
- The data table can also change (even to one with no data!) when this happens (e.g., from -1 h to -revori).

? Stations					Contact: questions@nmdb.eu
	(When selecting	? NMDB tables 📃 🛨			
				□ ■ATHN	
🗆 📕 BKSN					? Overplot main 🛛 🖃 🖶
		ESOI	□ ■FSMT	□ ■HRMS	
🗆 📕 INVK	🗆 🗖 IRK2	🗆 📕 IRK3		□ ■ JBGO	? Overplot Ri 📃 🖶
🗆 📕 JUNG	🗆 📕 JUNG1			C KIEL2	
LMKS					🦰 ? Proton / Kp plots 🛛 🖃 🛨
🗆 📕 MWSN				□ ■NEU3	
□ ■NEWK	NRLK	□ ■NVBK		□ ■PSNM	— ? Env. & meta data 🛛 😑 🛨 —
	D PWNK		SANB		
SOPB	SOPO			TSMB	? Scaling Options 😑 🗄
TXBY					
	*		On	line* stations in green	? Event Options
	Stations [*]				? Event Options 🖃 🕀
🛨 🖃 Bonner	Spheres [*]				
🛨 🖃 Smart S	election				? Ascii Options 📃 🕀
					? Style Options
? Date Select				? Resolution	? Style Options 🖃 🖶
		iours () mins		Time resolution:	
O From 23	v Mar v 2	022 🗸 🔟	Dh 🗸	best v	NEST is provided by
Omn V				□ Force**	PSL 🛣
To 23	✓ Mar ✓ 2	022 🗸 🔟	23h 🗸	Smooth window:	
	r/date 73 (2021-1	0-28)	ailed list	0	
Pata variab		2-18) ? Šc ale		Output	-
Pressure &		 Relative 	scale	Plot	
 Pressure co 	,	O Counts/		⊖ Ascii	
	l .	Log sca	le	○ Plot & ascii	
○ Pressure		(* mbas farme	000,000)		
		(* mbar for pr	essure)		
		Submit Reset)		

Overview of sources - WDCCR

The WDCCR started its operation in 1957 (Lincoln & Shea, 1973). It collects pressure-corrected data from NM stations and makes them available online as ASCII files of 1 h time resolution, through an FTP service (now a https service).

WDCCR has three ASCII data formats:

LONGFORMAT SHORTFORMAT CARDFORMAT They all contain the same data.

Notes:

 WDCCR has the most extensive selection of available stations, but in many cases the data might be outdated and/or not corrected for errors.

Index of /WI	DCCR/files/	STA	TIONS
Name	Last modified	<u>Size</u>	<u>Description</u>
Parent Directory		_	
AHMEDA/	2021-12-22 14:07	_	
ALBUQU/	2014-03-04 11:27	_	
ALERT/	2021-12-22 14:07	_	
	2021-12-22 14:07	_	
	2021-12-22 14:07	_	
APATIT/	2021-12-22 14:07	_	
ATHENS/	2021-12-22 14:08	_	
BAGNER/	2014-03-04 11:28	_	
BAKSAN	2021-12-22 14:08	_	
BARENT/	2021-12-22 14:08	_	
BEIJIN/	2021-12-22 14:08	_	
BEIRUT/	2014-03-04 11:28	_	
BERGEN/	2014-02-06 12:21	_	
BERKEL/	2021-12-22 14:08	_	
BRISBA/	2021-12-22 14:08	_	
BUENOS/	2021-12-22 14:08		
BURE/	2021-12-22 14:08		
CALGAR/	2021-12-22 14:08		
CAPE_H/	2014-02-06 12:22	-	
	2014-02-06 12:22	-	
CAPE_S/		-	
CASEY/	2014-03-04 11:29	-	
<u>CHACAL/</u>	2021-12-22 14:08	-	
<u>CHICAG/</u>	2021-12-22 14:08	-	
<u>CHURCH/</u>	2021-12-22 14:08	-	
<u>CLIMAX/</u>	2021-12-22 14:08	-	
<u>COLLEG/</u>	2021-12-22 14:08	-	
<u>CORDOB/</u>	2021-12-22 14:09	-	
DALLAS/	2021-12-22 14:09	-	

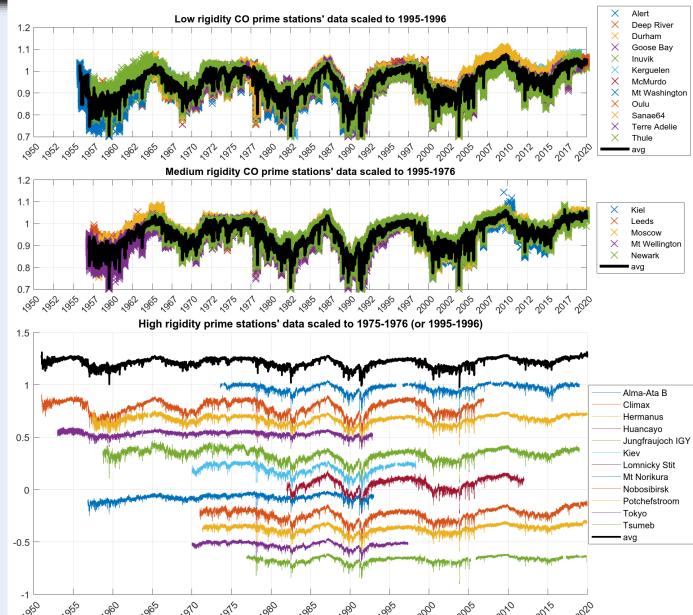
Overview of sources - Izmiran

The Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation (IZMIRAN) of the Russian Academy of Sciences was established in 1939 and offers data for most Russian NM stations, but it also offers data from other NM stations. Altogether, IZMIRAN has data for 81 NMs.

You can access data via the idB-service and/or via html address commands. (see Väisänen et al. 2021).

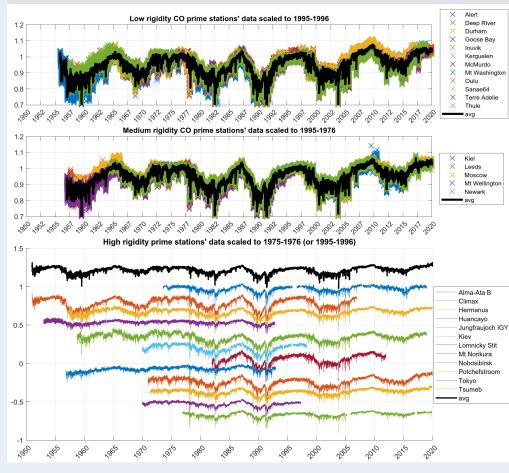
Notes:

 Izmiran often has undocumented changes or corrections to the data. They often seem like improvements to the data, but without documentation it is hard to say if they introduce any bias or other effects.


Network of Co.	smic ray Stations
[Neutron Monitors] [Solar Neutrons] [Muon Telescopes	Base Potchefstroom University] [Magnetometers] [GPS
	elated Data] [Space Weather]
• <u>A to Z index MAP Design of neutron monitors</u>	s IZMIRAN CR detectors
Neutron Monitors, operated	
All Cosmic Ray Stations.	
Name - means original site of the station.	
iDB - site created by WDC-B2+IZMIRAN using of t	the data archives and sources in Real Time
(original station sites, NMDB). Data submitted in a s	
dBi & Alma-AtaB (Mt. Tien Shan) & DataBase of)	Kazakhstan Spectrograph & Alma-AtaB (Mt.Tien Shan) ne
dBi & Apatity	
idBi & Athens	
IdB# & Baksan	
IdB# & Barentzburg	
IdB ^{is} & Beijing or Digital Data	
IdB# & Bure	
IdB & Calgary	
IdBli & Cape Shmidt	
IdB# & Climax	
dBi & Yerevan2000 (Mt. Nor-Amberd 2000 m)	
IdB & Yerevan3000 (Mt. Aragats 3000 m)	
IdB & ESOI (Mt. Hermon, Israel)	
IdB & Fort Smith	
IdB & Goose Bay	
IdB & Haleakala (18NM64)	
IdB & Hafelekar	
IdB & Haleakala (12IGY)	
IdB & Hermanus, South Africa or new	
IdB# & Inuvik	
IdBi & Irkutsk(new) Irkutsk(old)	
TdBI & Irkutsk-2000 ()	
IdB# & Irkutsk-3000 ()	
dB & Jungfraujoch (3NM64)	
IdB ¹ & Jungfraujoch (12IGY)	
IdBi & Kerguelen	
IdB ^{II} & <u>Kiel</u> or <u>ftp</u>	
dB & Kingston or ftp	
dBi & LARC () or University of Chile	
dBI & Lomnitski Stit	
IdB ⁱⁱ & <u>Magadan</u> or <u>ftp Magadan</u>	
dB & Mawson or ftp	
dBi & Mexico	
IdB & McMurdo or Bartol Research Institute	
IdB & Mirny (Antarctida)	
IdB# & Moscow	
IdB & Moscow Experimental NM	
IdB & MCRL: ftp Mobile CR Laboratory or DB(W	(anderer) Mobile CP I aboratory

Prime data criteria

- Instead of just subjectively choosing data from "well-known" NMs, we built specific criteria for the prime data:
 - 1. Data is normalized to years 1995-1996 (or 1975-1976) so that the median for those years is 1. After removing GLE's (GLE list gle.oulu.fi) and outliers (5-point movmedian filter), the **data must have at least 20 years of data**.
 - 2. The ratio of the max and min values of the data must not exceed 2. This means that **variation cannot exceed +-33%.** This step excludes data with notable steps.
 - We manually check for any remaining obvious errors, steps or drift in the data.
 Minor and easily fixed problems were corrected, otherwise dataset is excluded.
 - 4. For prime candidates with multiple possible sources, we use the station with the most available data.



Determining which source to use

1. Compile a list of long-lived, stable stations to generate a "prime" dataset for different rigidities.

2. Compare each data source of each station to the corresponding prime dataset.

12

0.8

0.0

1.2

0.8

0.6

1960

1970

1980

1960

1970

1980

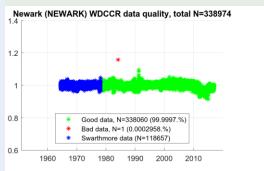
Newark (nwrk) Izmiran data quality, total N=480593

Bad data, N=59 (0.012308.%)

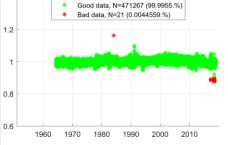
Good data, N=479285 (99.9877.%)

1990

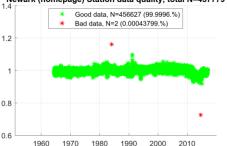
Good data, N=155713 (99.9897.%)


1990

2000


Newark (NEWK) NMDB 1h revori data quality, total N=156185

Bad data, N=16 (0.010274.%)


2000 2010

Newark (homepage) Station data quality, total N=457779

3. Select the source with best "good data" coverage and/or otherwise stable dataset as the **recommended source**.

> In Newark's case, we select NMDB1h, even though the coverage is not the best.

Recommendation list

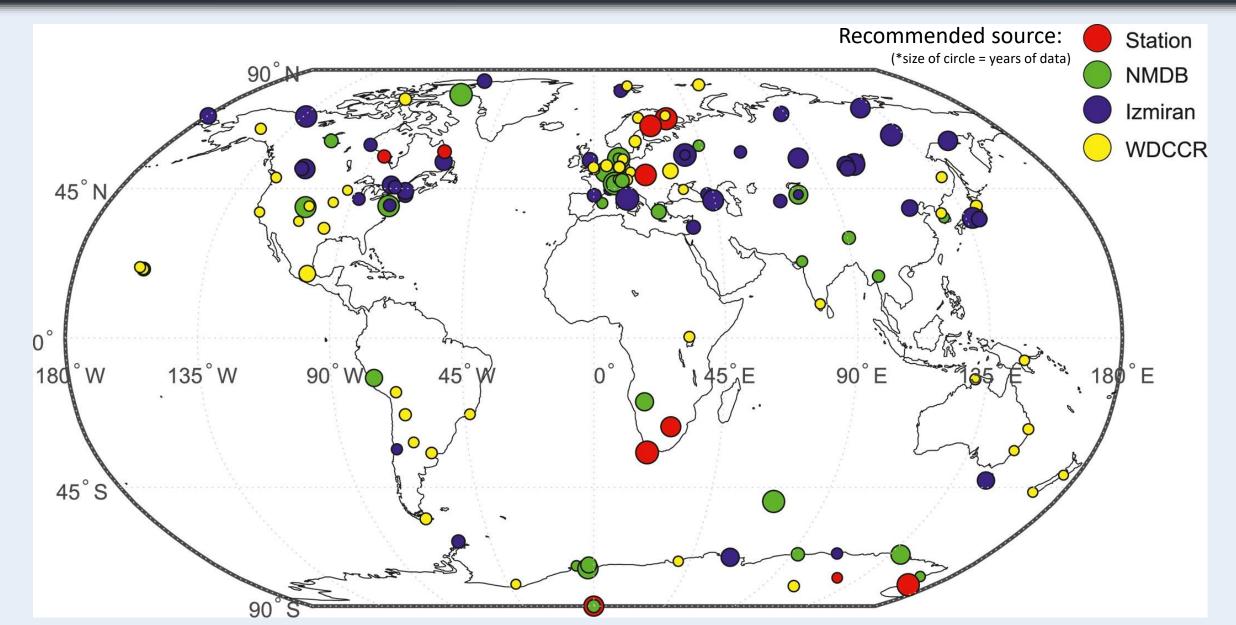
	_				_			_		_	
Ahmedabad	4	Climax	4	Herstmonceux	3	Lincoln 3	3 Newark	4	Sverdlovsk	2	
Albuquerque	3	College	3	Hobart	3	Lindau_IGY 3	3 Nobosibirsk	2	Sydney	3	
Alert	2	Cordoba	3	Huancayo	4	Lindau_NM64	3 Nor-Amberd	4	Syowa	3	List of recommended data
Alma-Ata A	2	Daejeon	4	Inuvik	2	Lomnický Štit	L Norilsk	2	Tashkent	2	sources for each station.
Alma-Ata B	4	Dallas	3	Invercargill	3	London 3	3 Northfield	3	Tbilisi	2	
Alma-Ata C	2	Darwin	3	Irkutsk	2	Magadan 2	2 Ottawa	2	Terre Adelie	4	
Apatity	1	Deep River	2	Irkutsk 2	2	Makapuu_Pt 3	3 Oulu	1	Thailand	4	1=Station homepage,
Aragats	4	Denver	3	Irkutsk 3	2	Mawson 2	2 Peawanuck	1	Thule	4	2=IZMIRAN,
Athens	4	Dome B	1	Jang Bogo	5	McMurdo 1	L Pic du Midi	2	Tibet	4	3=WDCCR,
Bagneres	3	Dome C	1	Jungfraujoch IGY	4	Mexico 3	B Potchefstroom	1	Tixie Bay	2	4=NMDB1h,
Baksan	2	Dourbes	4	Jungfraujoch NM64	4	Mina Aguilar 🗧 🗧	B Prague	3	Tokyo	2	,
Barentsburg	2	Durham	2	Kampala	3	Mirny 4	1 Predigtstuhl	3	Tsumeb	4	5=NMDBrevori.
Beijin	2	Ellsworth	3	Kerguelen	4	Mobile CR Laboratory	2 Resolute Bay	3	Uppsala	3	
Beirut	3	ESOISR	2	Khabarovsk	3	Morioka 3	B Rio De Janeiro	3	Ushuaia	3	Prime stations are in bold .
Berkeley	3	Fort Smith	5	Kiel	4	Moscow	2 Rome	2	Utrecht	3	
Brisbane	3	Freiburg	3	Kiel 2	4	Moscow experimental 2	2 Sanae64	2	Weissenau	3	
Buenos Aires	3	Fukushima	3	Kiev	3	Mt Norikura 🛛 💈	2 Sanae80	4	Wellington	3	
Bure	2	Goettingen	3	Kingston	2	Mt Washington	2 Santiago	2	Victoria	3	
Calgary	2	Goose Bay	2	Kiruna	3	Mt Wellington 2	2 Seoul	3	Wilkes	3	
CALM	5	Hafelekar	2	Kodaikanal	3	Munchen	3 Simferopol	3	Vostok	2	
Cape Schmidt	2	Haleakala_IGY	2	Kuhlungsborn	3	Murchison Bay	South Pole	1	Yakutsk	2	
Casey	3	Haleakala_SM	2	Kula	3	Murmansk 3	South Pole Bare	4	Zugspitze	4	
Chacaltaya	3	Halle	3	Lae	3	Nain 2	L Sulfur Mt IGY	3			
Chicago	2	Heiss Is	3	Larc	2	Nederhorst 3	3 Sulfur Mt NM64	2			
Churchill	2	Hermanus	1	Leeds	2	Neumayer 3 4	1 Swarthmore	2			

Station info list

- We also compiled an extensive spreadsheet with station information, acronyms, source links, lat&lon etc.
- Available as a supplement in the article

 ${\bf Table \ S5.} \quad {\rm The \ data \ table \ named \ NMStationInfoList.csv \ contains \ metadata, \ coverage \ and \ named \ na$

data quality information. It includes the following 29 columns:

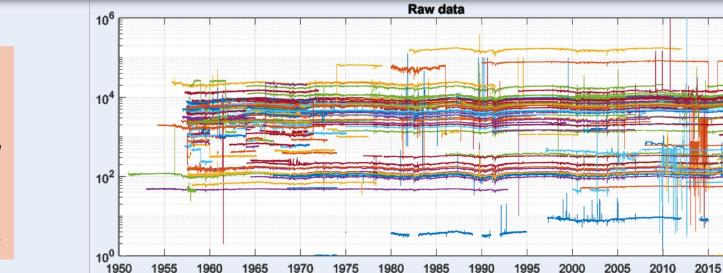

1. Station name	16. Geographical latitude
2. Other name(s)	17. Geographical longitude
3. Detector type	18. Altitude of the NM location
4. Start year - End year	19. Geomagnetic Cut-off rigidity
5. WDCCR acronym	20. Number of "Good" data points in WDCCR
6. NMDB acronym	21. Fraction of "Good" data points in WDCCR
7. IZMIRAN acronym	22. Number of "Good" data points in IZMIRAN
8. URL of Station homepage	23. Fraction of "Good" data points in IZMIRAN
9. Number of available data sources	24. Number of "Good" data points in NMDB-1h
10. Data points (1h) in WDCCR data	25. Fraction of "Good" data points in NMDB-1h
11. Data points (1h) in NMDB-1h data	26. Number of "Good" data points in NMDB-revori
12. Data points (1h) in NMDB-revori data	27. Fraction of "Good" data points in NMDB-revori
13. Data points (1h) in IZMIRAN data	28. Number of "Good" data points in Station
14. Data points (1h) in Station data	29. Fraction of "Good" data points in Station
15. Maximum coverage in years	30. Maximum coverage by "Good" data in years

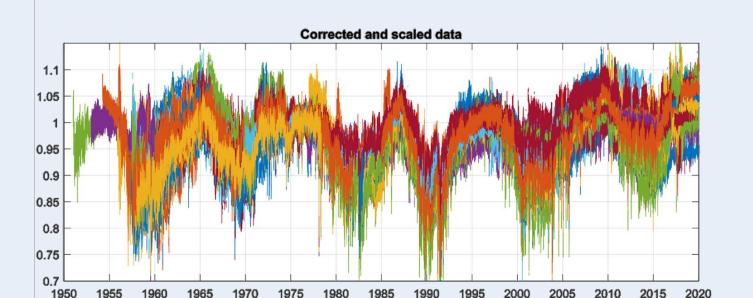
																	·
WDCCR -	NMDB -	Izmiran	Data homepag	# of data source -	WDCCR hours	NMDB1h hours	NMDBori hours	NMDBrevori hours	 Izmiran hours 	Station hours	Max length [y	Mean length, year	Latitude	Longitud	Altitude -	Cut-off Rigidity	WDCCR good data
AHMEDA	AHMD			2	61798	46714	0	0	0	0	7.05	2.06	23.01	72.61	0	15.94	39214
ALBUQU				1	12706	0	0	0	0	0	1.45	0.24	35.08	-106.62	1567	4.47	0
ALERT		alrt		2	194491	0	0	0	194491	0	22.20	7.40	82.50	-62.33	57	0.00	194171
ALMA_A	AATA	aata		3	352964	0	0	0	352275	0	40.29	13.42	43.25	76.92	806	6.61	173047
ALMA_B	AATB	aatb		3	379138	368289	311357	310594	379225	0	43.29	33.27	43.14	76.92	3340	6.61	348080
		aatc		1	0	0	0	0	5031	0	0.57	0.10	43.18	76.92	1670	6.61	0
APATIT	APTY	apty	http://pgia.ru/data/	4	504204	161587	161564	161564	506535	438154	57.82	36.79	67.55	33.33	177	0.57	439958
EREVN3	ARNM	yrv3		3	67612	36956	36635	36637	68610	0	7.83	4.69	58.47	44.17	3200	7.10	20784
ATHENS	ATHN	athn	http://cosray.phys	4	159507	153086	151698	151588	217281	0	24.80	15.85	37.98	23.78	260	8.53	81679
BAGNER				1	2663	0	0	0	0	0	0.30	0.05	43.01	0.02	550	5.45	0
BAKSAN	BKSN	bksn		3	133949	80215	80350	80216	134018	0	15.30	9.68	43.28	42.69	1700	5.60	71941
BARENT	BRBG	brbg	http://pgia.ru/data/	4	122147	0	0	0	137234	0	15.67	4.93	78.06	14.22	51	0.00	121938
BEIJIN		bjng		2	277231	0	0	0	277251	0	31.65	10.55	39.08	116.26	48	10.00	230728
BEIRUT				1	2494	0	0	0	0	0	0.28	0.05	33.90	35.47	15	10.42	2367
BERKEL				1	18752	0	0	0	0	0	2.14	0.36	37.87	-122.27	70	4.54	0
BRISBA				1	47922	0	0	0	0	0	5.47	0.91	-27.43	153.08	0	7.21	20193
BUENOS				1	70668	0	0	0	0	0	8.07	1.34	-34.60	-58.48	0	10.63	42653
BURE	BURE	bure		3	35342	0	0	0	53878	0	6.15	1.70	44.63	5.91	2252	5.00	33776
CALGAR	CALG	calg		3	350062	0	250972	250972	406849	0	46.44	23.95	51.08	-114.13	1128	1.08	175719
	CALM			1	0	49238	54312	54312	0	0	6.20	3.00	40.56	3.16	708	6.95	0
CAPE_S		caps		2	244578	0	0	0	275021	0	31.40	9.89	68.55	180.32	0	0.45	221845
CASEY				1	14935	0	0	0	0	0	1.70	0.28	-66.28	110.53	0	0.01	14935
CHACAL				1	62001	0	0	0	0	0	7.08	1.18	-16.32	-68.15	5200	13.10	14649
CHICAG		chgo		2	119902	0	0	0	119903	0	13.69	4.56	41.83	-87.67	200	1.72	51049
CHURCH		chur		2	140075	0	0	0	140076	0	15.99	5.33	58.75	-94.08	39	0.21	113973
CLIMAX	CLMX	clmx		3	444236	459934	0	0	446710	0	52.50	25.70	39.37	-106.18	3400	2.99	419189
COLLEG				1	59890	0	0	0	0	0	6.84	1.14	64.08	-147.83	0	0.54	42601
CORDOB				1	39025	0	0	0	0	0	4.45	0.74	-31.42	-64.19	434	11.45	31816
	DJON			1	0	46565	46597	46368	0	0	5.32	2.65	36.24	127.22	200	11.22	0
DALLAS				1	86324	0	0	0	0	0	9.85	1.64	32.98	-96.73	208	4.35	77387
DARWIN				1	56649	0	0	0	0	0	6.47	1.08	-12.43	130.87	30	14.09	0
DEED D		donu		0	2226/17	0	0	0	22100/	0	27.07	10.6/	//6 10	77.50	1/15	1.1/	2120//7

Map of all NM stations

- Data from 147 stations were analysed to create a list of recommended sources.
- NM datasets from different sources often have different versions, leading to discrepancies in the data and affecting reproducibility and reliability of studies.
- Users need to be careful when selecting which data sources to use.
- The recommendation list gives a good basis for data selection, but best selection depends on usage of the data and possible corrections employed.
- Manual inspection and corrections to the selected data are recommended, depending on usage.
- These results are based on a specific version of datasets at time of writing. When databases do updates or changes, the validity of the results decreases.
- An initiative to fix the highlighted problems and preserving, improving and documenting the data is needed. A new EU or other project?

Thank you! Questions?


Reference: Väisänen, P., Usoskin, I., & Mursula, K. (2021). Seven decades of neutron monitors (1951–2019): Overview and evaluation of data sources. *Journal of Geophysical Research: Space Physics*, 126, e2020JA028941. <u>https://doi.org/10.1029/2020JA028941</u>



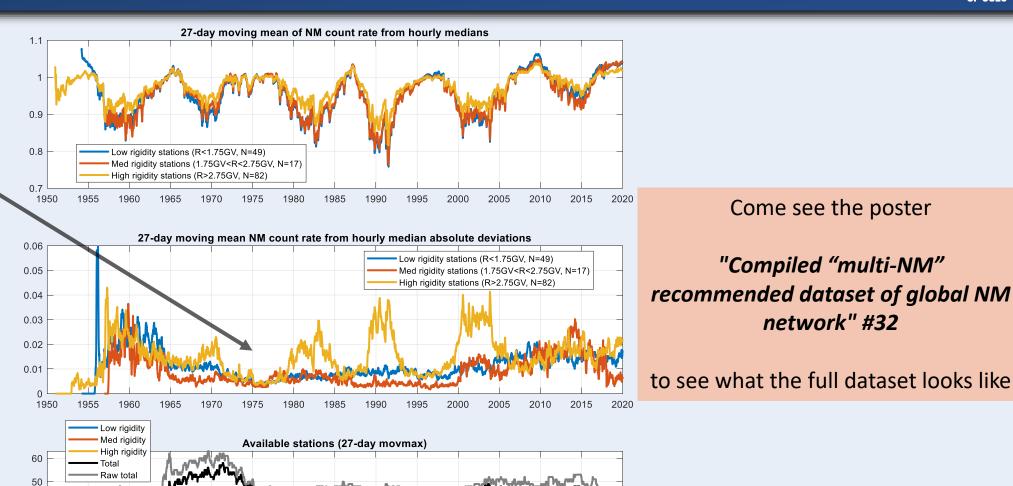
Compilation of the recommended datasets

2020

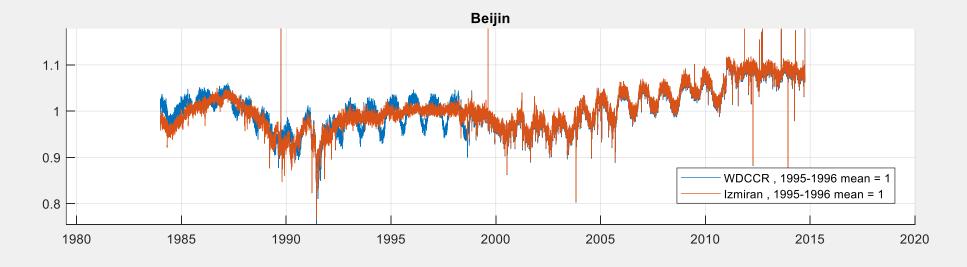
Come see the poster

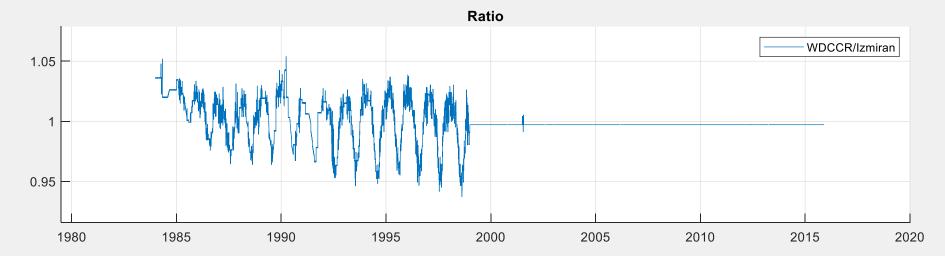
"Compiled "multi-NM" recommended dataset of global NM network" #32

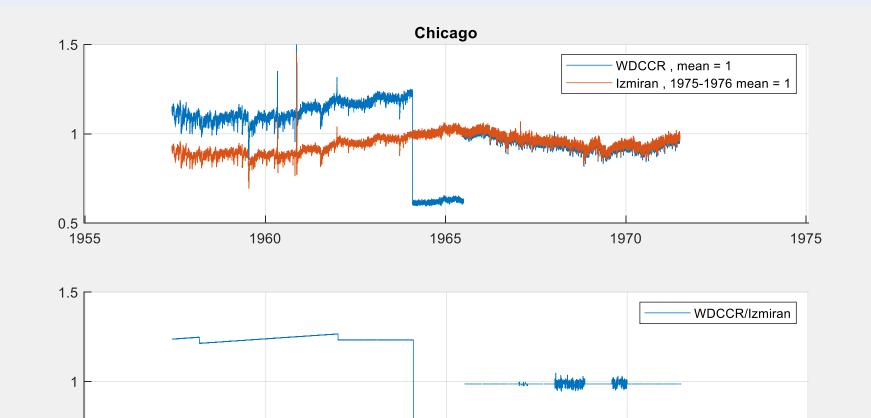
to see what the full dataset looks like

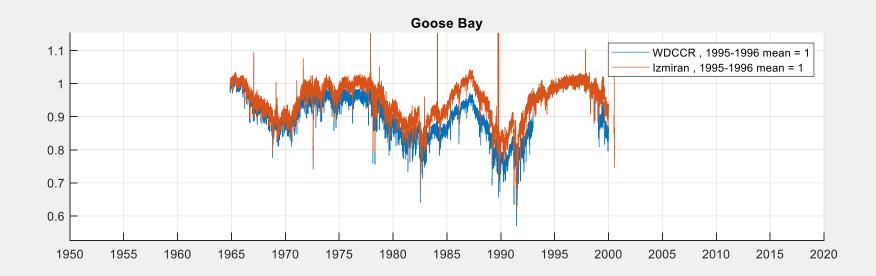


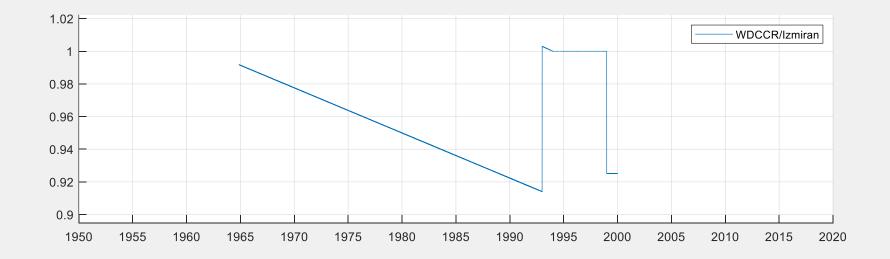
All data combined

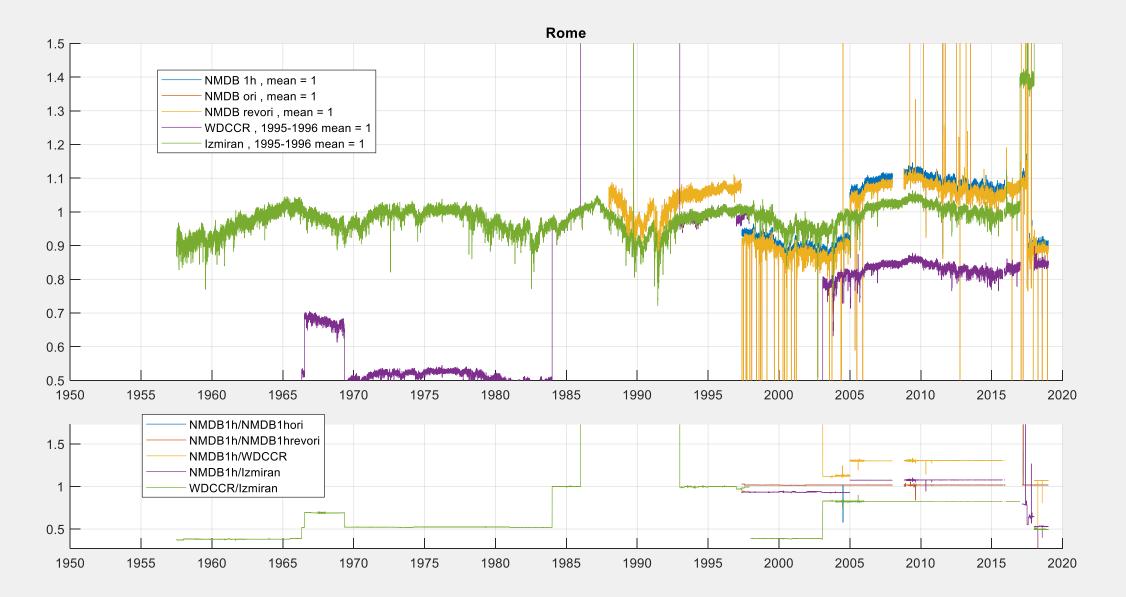

Low deviation in 1975-1977 is no coincidence:

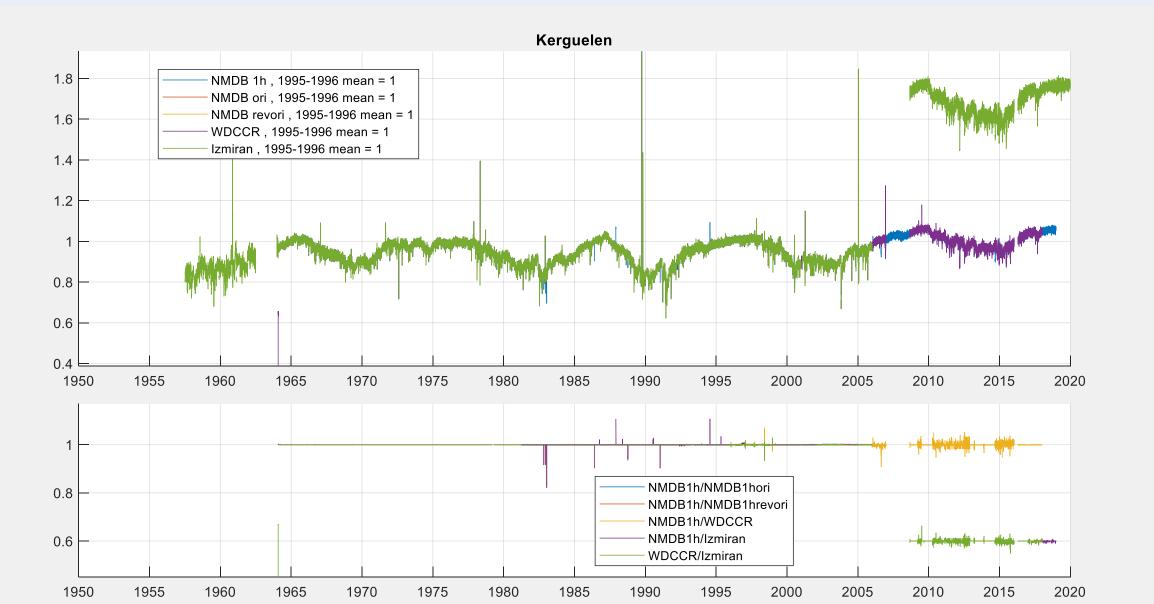

Datasets were scaled to those years. If there are any drifts or other similar effects in the datasets, the deviations gets larger the further away from the scaling years we are.




0.5

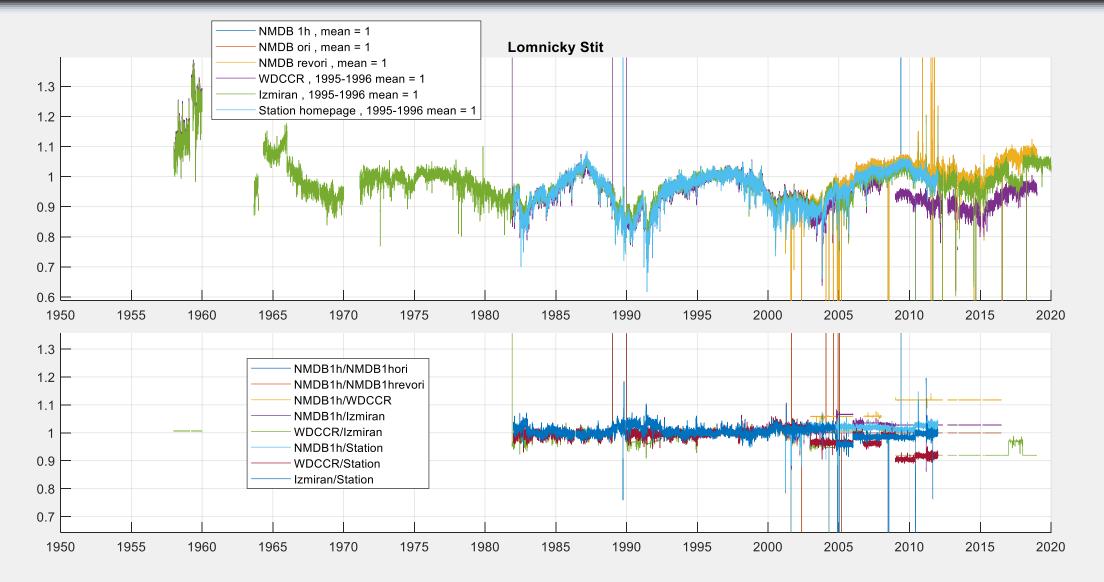






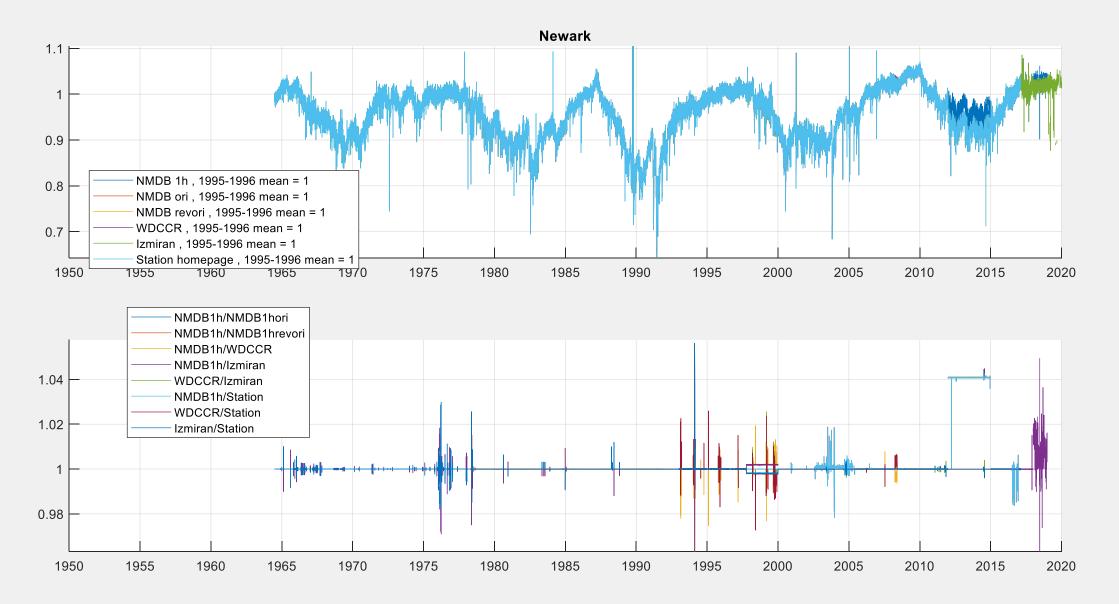
201

Examples – Multiple sources

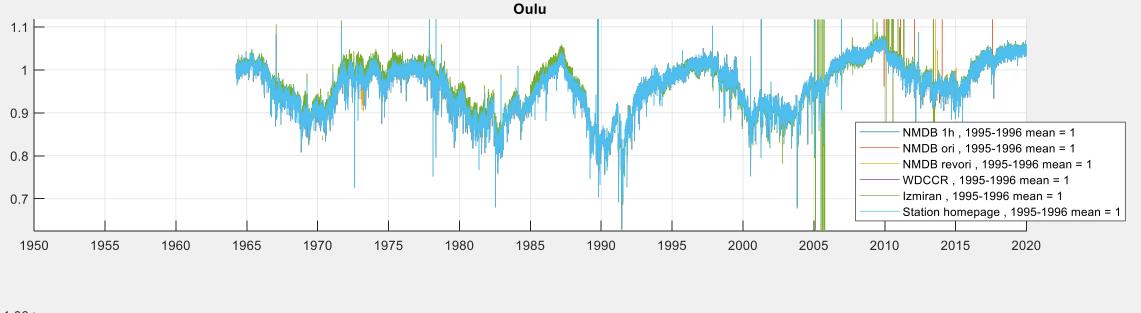

സ്വ

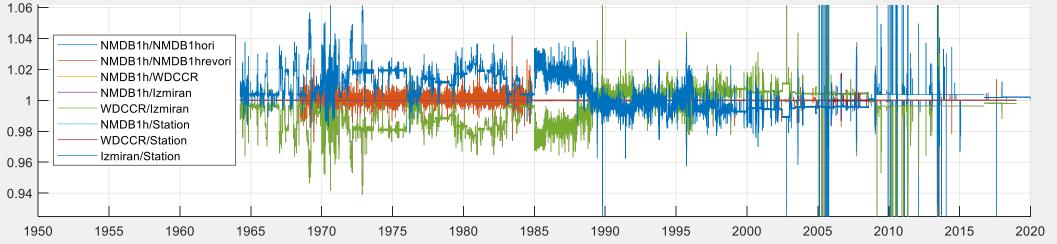
UNIVERSITY OF OULU

Examples – Multiple sources

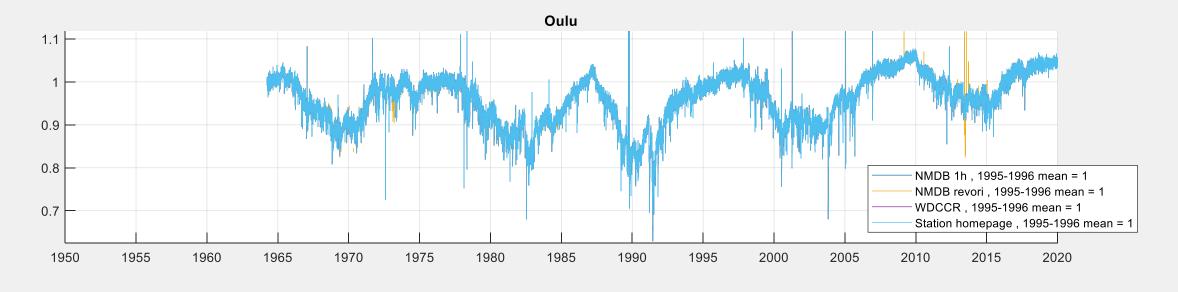


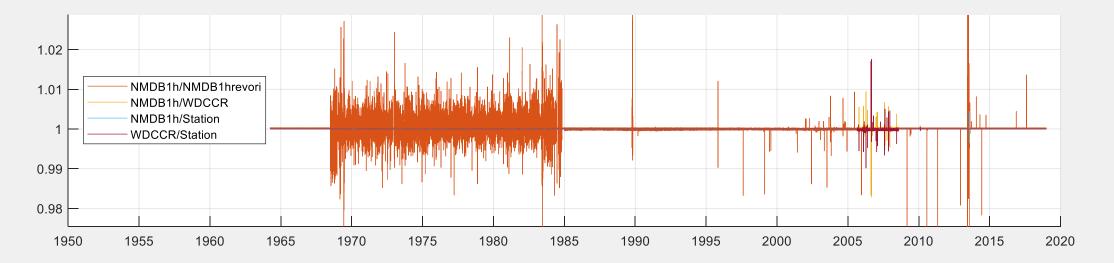
Examples – Small differences





Examples – Small differences





Examples – Small differences

