Precision measurement of daily electrons fluxes by AMS

Tong Su

Shandong Institute of Advanced Technology

AMS

European Cosmic Ray Symposium July 26,2022

Cosmic rays in the heliosphere

Modulation of cosmic rays in the heliosphere depends on their mass, charge, energy, and solar activities.

Electrons are the most abundunt negative cosmic rays. Positrons are positive cosmic rays with lightest mass.

Daily electrons over ten years

First daily electron fluxes over an extended period of time.

AMS daily electrons and protons:

Unique data to study charge-sign dependence on multiple time scales

•

Non-recurrent variations of electron and proton fluxes

The Recurrent Variation in Electron Flux: Periodicity

- The wavelet analysis is used to study the periodicity in electron fluxes.
- Red-noise model is used to estimate the significance of the periods.

Significance of the Periodicity

Normalized Power

Rigidity and Time Dependence of the Periodicity Strength

Hysteresis in the electron and proton flux

Hysteresis in the electron and proton flux

Structures in the Electron-Proton Hysteresis

Comparison between positrons, protons, and electrons

Positron-Electron Hysteresis

Approximately Linear Relation between Positron and Proton

Daily electron positron fluxes are measured by AMS from May 2011 to May 2021.

3-day

2021

Φ

2077

2.0

Electron fluxes exhibite recurrent variation with 9-, 13.5-, and 27-day periods. The time and rigidity dependence of the electron periodicity is different from proton.

Electron-proton and electron-positron hysteresis show complex structures.

Comprehensive dataset to study cosmic ray propagation in the heliosphere

Conclusion

By 2030, AMS will explore nearly two complete solar cycle

