

Indication for a Local Source of Ultra-High-Energy Cosmic Rays in the Northern Hemisphere

UHECR detectors: TA vs PAO

ku.ac.ae

Differences in spectrum after rescaling within uncertainties

4

5

The idea: explain differences with a local source in the North

ku.ac.ae

The idea: explain differences with a local source in the North

Heinze et al. (2019)

Propagation including Nuclear Cascade

Detection

Detector systematics

Sources

Physical properties

Cosmological evolution

ku.ac.ae

Plotko et al. in prep.

UHECR source assumptions

Choices following Auger Combined Fit (and many other papers): Simple power-law with rigidity dependent cut-off

$$J_{source_A}(E) = \mathcal{J}_A f_{cut} (E, Z_A, R_{max}) \left(\frac{E}{10^9 \text{GeV}}\right)^{-\gamma}$$
$$f_{cut}(E) = \begin{cases} 1 & , E < Z_A R_{max} \\ \exp\left(1 - \frac{E}{Z_A R_{max}}\right) & , E > Z_A R_{max} \end{cases}$$

Source evolution locally as

Five injected elements: *H, He, N, Si, Fe* See also presentation by Antonio Condorelli And PAO 2017, Alves Batista et al. 2019, Heinze et al. 2019

Main parameters:
m,
$$\gamma$$
, R_{max} , elemental fractions

Hadronic interaction models: Sibyll 2.3c, Epos-LHC, QGSJET-II-04

Without and with a local source

ku.ac.ae 10

Plotko et al. in prep.

Local source

Composition assumption for local source: dominated by one elemental group where it dominates the spectrum

Best-fit case:

- Dominant elemental group: Si
- Distance 13.9^{+9.2}_{-13.9} Mpc
- Luminosity $1.1^{+2.0}_{-1.1} \cdot 10^{42} \text{ erg}/_{s}$
- The maximum rigidity $1.3^{+0.2}_{-0.1} \cdot 10^9$ GV

Local source

Plotko et al. in prep.

Distance to the local source

- 1. Intermediate to heavy elements preferred.
- 2. He and H disfavored.
- 3. Distance depends on the type of composition.

Conclusions

- Differences in the UHECR spectrum between PAO and TA can be explained by a dominant local source in the northern hemisphere.
- The presence of that local source is favored at the 5.6σ level compared to the scenario where both experiments observe the same isotropic UHECR flux.
- The best-fit case for the local source:
 - Source at < 23 Mpc
 - Emitting predominantly Si-group nuclei

Backup Slides

		Isotropic source distribution only			Isotropic source distribution + local source			
		SIBYLL 2.3C	Epos-LHC	QGSJET-II-04	SIBYLL 2.3C	Epos-LHC	QGSJET-II-04	PIOTKO et al.
	$\gamma^{ m iso}$	$-0.75_{-0.15}^{+0.15}$	$0.10^{+0.05}_{-0.1}$	$-0.60\substack{+0.03\\-0.05}$	$-0.75^{+0.15}_{-0.45}$	$-0.85\substack{+0.05\\-0.05}$	$-0.65\substack{+0.05\\-0.03}$	in prep.
dir	$R_{ m max}^{ m iso}~({ m GV})$	$1.8^{+0.2}_{-0.2}\times10^9$	$2.5^{+0.2}_{-0.2} imes 10^9$	$2.5^{+0.2}_{-0.2} \times 10^9.$	$1.8^{+0.2}_{-0.2} imes 10^9$	$2.0^{+0.2}_{-0.2} imes 10^9$	$2.5^{+0.2}_{-0.2} imes10^9$	
dist	$m^{ m iso}$	$3.6\substack{+0.6\\-0.6}$	< -4.8	< -5.8	$3.8^{+0.6}_{-0.6}$	$0.6\substack{+0.6\\-0.6}$?	< -5.8	
ce	$f_A(\%)$							
Inos	Η	$0.00^{+100.0}_{-0.00}$	$0.00^{+86.76}_{-0.00}$	$0.00\substack{+99.94\\-0.00}$	$0.00^{+99.93}_{-0.0}$	$0.00\substack{+99.88\\-0.00}$	$0.00^{+99.91}_{-0.00}$	
ic s	He	$86.01^{+1.99}_{-2.26}$	$88.80^{+0.33}_{-0.34}$	$92.98\substack{+0.26\\-0.27}$	$80.50^{+4.15}_{-4.95}$	$92.13\substack{+0.49\\-0.51}$	$92.72_{-0.26}^{+0.25}$	
rop	N	$13.32\substack{+0.73\\-0.70}$	$10.59\substack{+0.41\\-0.40}$	$6.87^{+0.27}_{-0.26}$	$18.80^{+0.94}_{-0.90}$	$7.74_{-0.30}^{+0.31}$	$7.15\substack{+0.20\\-0.19}$	
Isot	Si	$0.57\substack{+0.11 \\ -0.09}$	$0.61\substack{+0.11 \\ -0.09}$	$0.14^{+0.03}_{-0.03}$	$0.68^{+0.27}_{-0.19}$	$0.13\substack{+0.05\\-0.03}$	$0.13\substack{+0.03\\-0.03}$	
	Fe	$0.010\substack{+0.008\\-0.004}$	$0.015\substack{+0.017\\-0.008}$	$0.005\substack{+0.002\\-0.002}$	$0.012^{+0.012}_{-0.006}$	$0.003\substack{+0.003\\-0.002}$	$0.005^{+0.002}_{-0.002}$	
rce	isotope				silicon-28	silicon-28	nitrogen-14	
nos	$\gamma^{ m local}$				< -1.0	< -1.1	< -1.1	
	$R_{ m max}^{ m local}~({ m GV})$				$1.3^{+0.2}_{-0.1} imes 10^8$	$2.3^{+0.3}_{-0.1} imes10^8$	$2.5^{+0.3}_{-0.3} imes 10^9$	
Го	$L_{\rm CR}^{\rm local} \ ({\rm erg} \ s^{-1})$				$1.1^{+2.0}_{-1.1} imes 10^{42}$	$7.3^{+18.0}_{-7.3} imes 10^{41}$	$< 1.0 imes 10^{40}$	
	$D^{\rm local}$ (Mpc)				$13.9^{+9.2}_{-13.9}$	$11.3^{+9.5}_{-11.3}$	< +1.4	
ics	$\delta_E^{\mathrm{PAO}}(\%)$	$-11.6^{+2.1}_{-0.5}$	$-8.97^{+1.1}_{-0.5}$	$10.8\substack{+0.0\\-0.3}$	$-11.7^{+0.8}_{-1.5}$	$-9.5\substack{+0.5\\-0.6}$	$10.9\substack{+0.9\\-0.0}$	
mat	$\delta_E^{\mathrm{TA}}(\%)$	$-20.5^{+1.9}_{-0.5}$	$-18.3^{+1.0}_{-0.4}$	$10.8^{+0.0}_{-0.3}$	$-19.7^{+0.7}_{-1.3}$	$-17.6^{+0.5}_{-0.6}$	$1.1^{+0.8}_{-0.00}$	
stei	$\delta^{\mathrm{PAO}}_{\langle X_{\mathrm{max}} \rangle}(\%)$	-25^{+25}_{-27}	$-100.0\substack{+0\\-0}$	-100^{+0}_{-0}	-26^{+26}_{-23}	-100^{+0}_{-0}	-100^{+0}_{-0}	
$\mathbf{S}\mathbf{y}$	$\delta^{\mathrm{TA}}_{\langle X_{\mathrm{max}} \rangle}(\%)$	18^{+12}_{-12}	-18^{+5}_{-3}	-47^{+2}_{-0}	22^{+13}_{-11}	-12^{+4}_{-5}	-31^{+0}_{-2}	
	$\delta^{\mathrm{PAO}}_{\sigma(X_{\mathrm{max}})}(\%)$	50^{+26}_{-30}	-59^{+15}_{-9}	100^{+0}_{-0}	56^{+27}_{-24}	-73^{+11}_{-11}	100^{+0}_{-0}	
	$\delta^{\mathrm{TA}}_{\sigma(X_{\mathrm{max}})}(\%)$	-41^{+7}_{-9}	-90^{+4}_{-2}	3^{+3}_{-0}	-83^{+10}_{-9}	-100^{+0}_{-0}	-9^{+0}_{-3}	
	χ^2 /d.o.f.	109.1/44	130.4/44	269.6/44	67.6/40	87.8/40	239.6/40	
	Favored vis-a-vis				5.6σ	5.7σ	4.6σ	
	isotropic-only				0.00	0.10	1.00	

ku.ac.ae

14

27 July 2022

ku.ac.ae 15

Local source

ku.ac.ae 16

ku.ac.ae 19

ku.ac.ae 20

Local source, proton and iron elemental groups

Local source, helium and nitrogen elemental groups

Method

Parameters:

$$\boldsymbol{\lambda}^{\mathrm{iso}} = (\gamma^{\mathrm{iso}}, R_{\mathrm{max}}^{\mathrm{iso}}, m^{\mathrm{iso}}, \mathcal{L}_{\mathrm{CR}}^{\mathrm{iso}}, \boldsymbol{f}_{\mathrm{A}}^{\mathrm{iso}}),$$

 $\boldsymbol{\lambda}^{\mathrm{local}} = (\gamma^{\mathrm{local}}, R_{\mathrm{max}}^{\mathrm{local}}, D^{\mathrm{local}}, L^{\mathrm{local}}, A^{\mathrm{local}}).$

 χ^2 test: $\chi^2_{\text{PAO}} = \chi^2_{\text{PAO}}(\boldsymbol{\lambda}^{\text{iso}}, \, \delta^{\text{PAO}}_E, \, \delta^{\text{PAO}}_{\langle X_{\text{max}} \rangle}, \, \delta^{\text{PAO}}_{\sigma(X_{\text{max}})}).$ $\chi^2_{\text{TA}} = \chi^2_{\text{TA}} (\boldsymbol{\lambda}^{\text{iso}}, \boldsymbol{\lambda}^{\text{local}}, \delta^{\text{TA}}_E, \delta^{\text{TA}}_{\langle X_{\text{max}} \rangle}, \delta^{\text{TA}}_{\sigma\langle X_{\text{max}} \rangle})$ $\chi^2_{ ext{global}}(oldsymbol{\lambda}^{ ext{iso}},oldsymbol{\lambda}^{ ext{local}},oldsymbol{\delta}) =$ $\chi^2_{\rm PAO} + \left(\frac{\delta^{\rm PAO}_E}{\sigma^{\rm PAO}_E}\right)^2 +$ $+\left(\frac{\delta^{\mathrm{PAO}}_{\langle X_{\mathrm{max}}\rangle}}{100\%}\right)^{2}+\left(\frac{\delta^{\mathrm{PAO}}_{\sigma(X_{\mathrm{max}})}}{100\%}\right)^{2}+$ $\chi^2_{\mathrm{TA}} + \left(\frac{\delta^{\mathrm{TA}}_E}{\sigma^{\mathrm{TA}}_E}\right)^2 +$ $+ \left(\frac{\delta_{\langle X_{\max}\rangle}^{\mathrm{TA}}}{100\%}\right)^2 + \left(\frac{\delta_{\sigma(X_{\max})}^{\mathrm{TA}}}{100\%}\right)^2.$

 δ represent the systematic uncertainties

ku.ac.ae 23

Energy-independent shift

ku.ac.ae 24

Energy-dependent shift

ku.ac.ae 25

Energy-dependent shift

No local source

Plotko et al. in prep.

Local source of iron-56 in the Northern Sky

ku.ac.ae 26

PriNCe

<u>Propagation including Nuclear Cascade</u>

- Written in pure Python using Numpy and Scipy
- Directly solve the transport equation
- Large speed boost from sparse matrix algorithms
- Public available Analysis tools for parameters scan (https://github.com/joheinze/PriNCe)
- Developed at DESY

>28 models \rightarrow >200 different scenarios