Diffusive Shock Acceleration at wind shocks in AGN-driven outflows

Enrico Peretti

Co-authors: M. Ahlers & A. Lamastra

[Based on: Peretti, Lamastra, Saturni, Ahlers, Blasi, Morlino & Cristofari 2022 in prep.]

UNIVERSITY OF COPENHAGEN

Co-financed by the Connecting Europe Facility of the European Union

Outline

- Ultra Fast Outflows
- Acceleration and transport at wind shocks in UFOs
 - Solution: radial behavior and spectra
 - Multimessenger implications

Outline

• Ultra Fast Outflows

• Acceleration and transport at wind shocks in UFOs

• Solution: radial behavior and spectra

• Multimessenger implications

Outflows are detected in ≥ 50% of nearby AGNi

Ultra-Fast Outflows (UFOs)

Ultra-Fast Outflows (UFOs)

• Dist. scale = $10^{-3} - 10$ pc

Ultra-Fast Outflows (UFOs)

- Dist. scale = $10^{-3} 10$ pc
 - $v \approx 0.03 c 0.3 c$

Ultra-Fast Outflows (UFOs)

- Dist. scale = $10^{-3} 10$ pc
 - $v \approx 0.03 c 0.3 c$
 - $\Omega \gtrsim 3\pi$ sr

Ultra-Fast Outflows (UFOs)

- Dist. scale = $10^{-3} 10$ pc
 - $v \approx 0.03 c 0.3 c$
 - $\Omega \gtrsim 3\pi$ sr
- $\dot{M} \approx 10^{-3} 10 M_{\odot} yr^{-1}$

Outline

• Ultra Fast Outflows

• Acceleration and transport at wind shocks in UFOs

• Solution: radial behavior and spectra

• Multimessenger implications

4

1. The outflow is launched - t_0

2. Free expansion phase - t_1

3. Deceleration phase - $t > t_1$

• R_{sh} \rightarrow Wind shock (high Mach n.)

- R_{sh} \rightarrow Wind shock (high Mach n.)
 - R_{cd} \rightarrow Contact discontinuity

- R_{sh} \rightarrow Wind shock (high Mach n.)
 - R_{cd} \rightarrow Contact discontinuity
- $R_{fs} \rightarrow$ Forward shock (Mach n.?)

•
$$u_1 \approx 0.1 c \gg \dot{R}_{sh}$$

• The shocked wind is adiabatic

• The shocked wind region grows in t

TIME VARIATION = ADVECTION + DIFFUSION + LOSSES + INJECTION

• Spherically symmetric

TIME VARIATION = ADVECTION + DIFFUSION + LOSSES + INJECTION

• Spherically symmetric

• Stationary

• Spherically symmetric

• Stationary

•
$$U_{B,1} = \epsilon_B P_{ram,1}$$

•
$$D = \frac{1}{3} v r_L^{2-\delta} l_c^{\delta-1}$$

5


```
• Free escape at R<sub>fs</sub>
```

```
• Null net flux at r = 0
```

 $\mathbf{0} = -r^2 u(r)\partial_r f + \partial_r [r^2 D(r,p)\partial_r f] + \frac{p}{3}\partial_r [r^2 u(r)]\partial_p f - r^2 \Lambda(r,p) + r^2 Q(r,p)$

5

Boundary conditions:

• Free escape at *R*_{fs}

• Null net flux at r = 0

Acceleration-transport model

$$r^2 u(r)\partial_r f = \partial_r [r^2 D(r,p)\partial_r f] + \frac{1}{3}\partial_r [r^2 u(r)]p\partial_p f \Rightarrow r^2 Q(r,p) - r^2 \Lambda(r,p)$$

Acceleration-transport model

 $r^{2}u(r)\partial_{r}f = \partial_{r}[r^{2}D(r,p)\partial_{r}f] + \frac{1}{3}\partial_{r}[r^{2}u(r)]p\partial_{p}f + r^{2}Q(r,p) - r^{2}\Lambda(r,p)$

Acceleration-transport model $r^{2}u(r)\partial_{r}f = \partial_{r}[r^{2}D(r,p)\partial_{r}f] + \frac{1}{3}\partial_{r}[r^{2}u(r)]p\partial_{p}f + r^{2}Q(r,p) - (r^{2}\Lambda(r,p))$ р Website: http://www.astro.wisc.edu/~gvance/index.html 6

Outline

• Ultra Fast Outflows

• Acceleration and transport at wind shocks in UFOs

• Solution: radial behavior and spectra

• Multimessenger implications

$$r^{2}u(r)\partial_{r}f = \partial_{r}[r^{2}D(r,p)\partial_{r}f] + \frac{1}{3}\partial_{r}[r^{2}u(r)]p\partial_{p}f + r^{2}Q(r,p) - r^{2}\Lambda(r,p)$$

Parameters:

•
$$u_1 = 0.28 c$$

•
$$\dot{M} = 0.05 M_{\odot} yr^{-1}$$

• $l_c = 0.05 \, pc$

•
$$T_{age} = 1000 \ yr$$

 $r^{2}u(r)\partial_{r}f = \partial_{r}[r^{2}D(r,p)\partial_{r}f] + \frac{1}{3}\partial_{r}[r^{2}u(r)]p\partial_{p}f + r^{2}Q(r,p) - r^{2}\Lambda(r,p)$

• $\int_{0}^{R_{sh}} dr T. E. \rightarrow$ upstream solution

 $r^{2}u(r)\partial_{r}f = \partial_{r}[r^{2}D(r,p)\partial_{r}f] + \frac{1}{3}\partial_{r}[r^{2}u(r)]p\partial_{p}f + r^{2}Q(r,p) - r^{2}\Lambda(r,p)$

- $\int_0^{R_{sh}} dr T. E. \rightarrow$ upstream solution
- $\int_{R_{sh}}^{R_{fs}} dr T. E. \rightarrow$ downstream solution

 $r^{2}u(r)\partial_{r}f = \partial_{r}[r^{2}D(r,p)\partial_{r}f] + \frac{1}{3}\partial_{r}[r^{2}u(r)]p\partial_{p}f + r^{2}Q(r,p) - r^{2}\Lambda(r,p)$

- $\int_0^{R_{sh}} dr T. E. \rightarrow$ upstream solution
- $\int_{R_{sh}}^{R_{fs}} dr T. E. \rightarrow$ downstream solution
- $\int_{R_{sh}^{-}}^{R_{sh}^{+}} dr \ T.E. \rightarrow$ solution at the shock

Solution: radial behavior and spectra **Advection dominated Diffusion dominated** $F(r^*,E)[$ arbitrary units] $F(r,E^{st})[$ arbitrary units]100 108 10^{-1} 107 10-2 F(r, 10 PeV) 106 F(r, 10² PeV) 10-3 F(r, 10³ PeV) F_{sh} 105 10^{-4} E^2 $2 \times 10^{\circ}$ 3×10° $4 \times 10^{\circ}$ 10-3 10-2 100 10⁰ 10^{-1} 10¹ $E [10^{18} eV]$ R/R_{sh}

Outline

• Ultra Fast Outflows

• Acceleration and transport at wind shocks in UFOs

• Solution: radial behavior and spectra

• Multimessenger implications

Take home messages

- Diffusive shock acceleration can take place efficiently at wind shocks of UFOs
 - Maximum energies up to EeV can be reached
 - UHECRs injected in the host galaxy can feature a hard spectral slope
- UFOs can be bright neutrino sources while being opaque to gamma rays

THANKS FOR YOUR ATTENTION!

Back up

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial z} = \frac{\partial}{\partial z} \left[D \frac{\partial f}{\partial z} \right] + \frac{1}{3} \frac{\partial v}{\partial z} p \frac{\partial f}{\partial p} + Q - \frac{f}{\tau_{loss}}$$

Particle Multimessenger plot

NGC1068

Indications of neutrino production at TeV in the nearby NGC1068 while gamma is limited below 10² GeV

- Starburst emission?
- AGN jet? AGN wind?
 - Other sources?

Maximum Energy & Luminosity (SB-Wind)

