

UHECRs & Galactic halo bubbles

Vasundhara Shaw, Andrew Taylor, Arjen Van Vliet

1) https://www.cosmos.esa.int/web/planck/picture-gallery 2) Predehl, P., Sunyaev, R.A., Becker, W. et al. Detection of large-scale X-ray bubbles in the Milky Way halo. Nature 588, 227–231 (2020).()

V. Shaw - DESY, Zeuthen, ECRS 2022

Galactic Halo Bubbles

eRosita (thermal)

Large scale structures = large scale fields

(Pietsch et.al 1996)

NGC 253 ROSAT PSPC 0.d-0.4 keV 09 Q 5 arcmin

Milky way is not a starburst galaxy yet it has outflow!

(Beck et.al 1994)

Total radio intensity (*contours*) and magnetic field orientation of $\underline{NGC 253}$.

V. Shaw - DESY, Zeuthen, ECRS 2022

DESY.

DESY.

Probing magnetic fields with synchrotron radiation

Toy Model – Structured fields

$$B_{\rm tor} = B_{\rm str} e^{(-|z|/Z_{\rm mag})} e^{(-z_{\rm min}/|z|)} e^{(-|r|/R_{\rm mag})}$$

 R_{mag} & Z_{mag} = 5 kpc and 6 kpc B_{str} = 3.96 μ G

Toy Model – Turbulent fields

1) https://www.cosmos.esa.int/web/planck/picture-gallery

V. Shaw - DESY, Zeuthen, ECRS 2022

Toy Model – non-thermal electron distribution at 10 GeV

$$\frac{\mathrm{d}n_e}{\mathrm{dlog}E_e} = C_{\mathrm{norm}} \left(\frac{E_e}{E_{10\mathrm{GeV}}}\right)^{-p+1} e^{-r/R_{\mathrm{el}}} \operatorname{sech}^2\left(\frac{z}{Z_{\mathrm{el}}}\right)$$

Together magnetic fields and nonthermal electrons give Synchrotron!

 $R_{el} \& Z_{el} = 5$ kpc and 6 kpc

DESY.

Synchrotron radiation – standard picture

Synchrotron radiation

Polarised synchrotron **Probes magnetic field strength and geometry**

Maximum emission is observed when the electron pitch angles are perpendicular to magnetic fields.

V. Shaw - DESY, Zeuthen, ECRS 2022

-3 + 0

Results – Best fit case

Constraints

2022

	Best-fit value with 1σ con	nstraint
Parameter	Best-fit value	Description
$B_{ m str}$	$3.96^{+6.63}_{-1.96}\ \mu{ m G}$	Structured field strength
$B_{ m tur}$	$6.72^{+9.97}_{-3.56} \ \mu { m G}$	Turbulent field strength
$R_{\rm Mag} = R_{\rm el}$	$5^{+1}_{-0} \mathrm{kpc}$	Radial cut off
$Z_{\mathrm{Mag}} = Z_{\mathrm{el}}$	$6^{+1}_{-0}~{ m kpc}$	Azimuthal cut off
$\log_{10} (C_{\rm norm} [\rm cm^{-3}])$	$-11.72^{+0.62}_{-0.93}$	Electron density at 10 GeV

Backtracking of UHECRs through toy model using CRPropa3

