

Local Particle-in-cell Simulations Of The Magnetorotational Instability In Stratified, Sub-relativistic Accretion Disks

Astor Sandoval, PhD student

Department of Physics, University of Chile

Coauthors: Mario Riquelme (University of Chile) Anatoly Spitkovsky (Princeton University)

Accretion disks

Credit: NASA/JPL-Caltech/R. Hurt (IPAC)

(b) Dusty Disk – "Hamburger" *

Credit: ALMA (ESO/NAOJ/NRAO)/Lee et al.

Accretion disks are very common in astrophysics.

They correspond to gas rotating around a central gravitating object, which gradually falls onto it.

There are many astrophysical examples of accretion disks, which include:

- Cataclysmic variables (CVs).
- Active Galactic Nuclei (AGNs).
- Protostars.
- X-ray binaries (XTBs).

Why to study the collisionless MRI?

- For very low luminosity accretion disks, where $M \ll M_{Edd}$, the plasma thermalization time due to Coulomb collisions can be much larger than the accretion times of the plasma.
- Examples: Sgr A* and M87

(EHT Collaboration, 2022)

Thermalization time for electrons, t_{ee} , at $r \approx 10R_s$ $t_{ee} = \frac{\sqrt{2\pi}}{n_e \sigma_t c \ln \Lambda} \left(\frac{k_B T}{m_e c^2}\right)^{3/2} \approx 10 [yr]$

(Mahadevan & Quataert, 1997)

and the accretion time is

$$t_{acc} \approx 1.8 \times 10^{-5} \alpha^{-1} m r^{\frac{3}{2}} [s] \approx 1 [hour]$$

This means that in the inner region of the disk around Sgr A*:

 $t_{pp} \gg t_{pe} \gg t_{ee} \gg t_{acc}$,

meaning that the accreting plasma is "collisionless"

Non-thermal emission

MRI: what has been done?

Local shearing box approximation.

- Previous studies consider homogeneous plasma simulations.
- Simulation box corotate with a piece of accretion disk.
- From the corotational point of view, the plasma have a shear like velocity profile.
- (Riquelme et al., 2012; Hoshino, 2013, 2015; Kunz et al., 2016; Inchingolo et al., 2018, Bacchini et al., 2022)

Collisionless scenario

MRI with PIC: what has been done?

- Particle acceleration consistent with previous Magnetic Reconnection studies (Werner et al., 2016.)
- However, the existence of MRI turbulence depends on box size plasma.

PIC simulations of the Collisionless Magnetorotational Instability (MRI) in Stratified Black Hole Accretion Disks

MRI with PIC: what we are doing

• Stratification effects.

• Sub-relativistic regime $\left(\frac{k_BT}{m_ic^2} < 1\right)$, relevant for accretion disk around black holes.

- Starting point: pair plasma simulations $(m_i = m_e)$.
 - Relevant for ion dynamic.
- Starting point: 2D simulations.
- Low cyclotron frequency to rotation frequency $\left(\frac{\omega_c}{\Omega_0} = 7 20\right)$.
 - Realistic expected values range $\frac{\omega_c}{\Omega_0} \approx 10^8 10^{12}$, for Sgr A* and M87 at $R \approx 10 R_s$.

Current Work

- 2D Stratified simulations.
- Open boundary conditions.
- Plasma initialized as isothermal disk in hydrodynamical equilibrium.
- Uniform vertical magnetic field.
 - The Instability starts in the disk.
 - The disk like structure is sustained during the simulation.

$$H \sim \sqrt{2k_B T/m_i \Omega_0^2}$$

Astor Sandoval

PIC simulations of the Collisionless Magnetorotational Instability (MRI) in Stratified Black Hole Accretion Disks

Particle acceleration

Particle acceleration

PIC simulations of the Collisionless Magnetorotational Instability (MRI) in Stratified Black Hole Accretion Disks

10

Accelerated Particles Orbits

Conclusions

- The inclusion of stratification modifies the development of the MRI in several ways:
 - It allows the expansion of the disk as the plasma gets heated.
 - It allows magnetic flux to abandon the disk.
 - It distinguishes the disk midplane from the corona.
 - Particle acceleration is more efficient than in the unstratified situation.

• Run a 3D simulation to explore the effect of using 2D simulation.

• Relax the $m_i/m_e = 1$ assumption by using moderate values of m_i/m_e .

• Study the effect of the initial $\beta = \frac{P}{B^2/8\pi}$.

Thanks!

Astor Sandoval Collisionless Magnetorotational Instability (MRI) in Stratified Black Hole Accretion Disks 15