The FLUKA cross sections for galactic cosmic-ray propagation studies

M. Nicola Mazziotta

INFN Bari

mazziotta@ba.infn.it

with

Pedro de la Torre Luque, A. Ferrari, F. Loparco, P. R. Sala and D. Serini ECRS July 27, 2022

Introduction

- Current measurements of cosmic-ray (CR) fluxes have reached unprecedented accuracy
- Significant progress has been also made in the propagation models of galactic CRs
 - Secondary to primary CR ratios are useful tools to infer the grammage traversed by CR propagating for hundred millions of years in the Galaxy
 - These ratios depend on the cross sections describing the collisions among the various species of CR nuclei (spallation cross sections) with the interstellar medium (ISM)
- Current spallation cross sections models are based on set of parametrizations mixing (few) data points and simulation predictions for those channels with no measurements
- In this talk we present new sets of cross sections of cosmic-ray interactions in the Galaxy computed with the FLUKA simulation code that has been extensively tested against data
- These cross sections (up to iron) have been implemented in the DRAGON2* code to study the main propagation parameters

AMS collaboration, *Phys. Rev. Lett.* **120** (2018) 021101

^{*} Available at https://github.com/cosmicrays/DRAGON2-Beta_version

Diffusive transport of Galactic cosmic rays

$$\vec{\nabla} \cdot \left(-D \nabla N_i - \vec{v}_{\omega} N_i \right) + \frac{\partial}{\partial p} \left[p^2 D_{pp} \frac{\partial}{\partial p} \left(\frac{N_i}{p^2} \right) \right] = Q_i + \frac{\partial}{\partial p} \left[\dot{p} N_i - \frac{p}{3} \left(\vec{\nabla} \cdot \vec{v}_{\omega} N_i \right) \right]$$

$$D_{pp} = \frac{4}{3} \frac{1}{\delta(4 - \delta^2)(4 - \delta)} \frac{v_A^2 p^2}{D(R)}$$

$$-\frac{N_i}{\tau_i^f} + \sum \frac{N_j}{\tau_{j \to i}^r}$$

Cross sections parametrizations: need to go beyond!

WNEW3: W. Webber+ Astrophys. J. Suppl. Ser. 144 (2003) 153

GALPROP: https://galprop.stanford.edu/

FLUKA inelastic cross sections

CROSEC: V.S. Barashenkov and A. Polanski E2-94-417, JINR-E2-94-417 (1994) (default option in the DRAGON2)

FLUKA (direct) inclusive cross sections

FLUKA cumulative inclusive cross sections

Cumulative: cross sections of interactions with ISM including all the contributions of unstable nuclei for short lifetime decay

DRAGON2 predictions: fitting B/C

- The cross sections evaluated with FLUKA are implemented in the DRAGON2 code with the aim of studying the production of the secondary CRs B, Be and Li
 - $\delta \approx 0.45$, $D_0/H \approx 0.82 \times 10^{28} \text{cm}^2 \text{s}^{-1} \text{kpc}^{-1}$, $V_A \approx 23 \text{ km/s}$

FLUKA cross sections: B, Be and Li ratios

- Energy dependence is greatly reproduced above a few GeV per nucleon
- These ratios match AMS-02 data considering a ~20% scaling of the cross sections

$$\frac{J_k}{J_j}\left(E\right) \propto \frac{\sum_{\alpha \to j}^{\alpha \to k} J_{\alpha}(E) \sigma_{\alpha \to k}(E)}{\sum_{\alpha \to j}^{\alpha \to j} J_{\alpha}(E) \sigma_{\alpha \to j}(E)} \quad \xrightarrow{\text{high energies}} \quad \sim \frac{\sum_{\alpha \to j}^{\alpha \to k} C_{\alpha} E^{-\gamma_{\alpha}} \sigma_{\alpha \to k}(E)}{\sum_{\alpha \to j}^{\alpha \to j} C_{\alpha} E^{-\gamma_{\alpha}} \sigma_{\alpha \to j}(E)}$$

The halo size

The halo size can be constrained from the ¹⁰Be ratio to the ⁹Be and Be (=⁹Be+¹⁰Be)

Combined fit of light secondary CRs (1)

- Markov Chain Monte Carlo analysis:
 - Combination of the ratios of secondary CRs
 - Parameters entering in the diffusion parametrization + Alfven speed included in the fit
 - Nuisance parameters (scale factors, Sx) for renormalizing cross sections
- Injection spectra are left free in the fit, resulting in different groups of primary elements (p, He, C-O, N-Na-Al, Ne-Mg-Si, Fe)
 - B/C, B/O, Be/C, Be/O, Li/C, Li/O (Propagation parameters)
 - ¹⁰Be/⁹Be, ¹⁰Be/Be (Halo), Be/B, Li/B, Li/Be (scale factors: Sx, Halo)

$$\ln \mathcal{L}^{Total} = \sum_{F}^{Li,Be,B/(C,O,Li,Be,B)} \ln(\mathcal{L}(F)) + \sum_{X}^{B,Be,Li} \mathcal{N}_{X}$$

$$D = D_0 \beta^{\eta} \left(\frac{R}{R_0}\right)^{\delta}$$
 Source hypothesis $D = D_0 \beta^{\eta} \frac{(R/R_0)^{\delta}}{\left[1 + (R/R_b)^{\Delta \delta/s}\right]}$ Diffusion hypothesis

Combined fit of light secondary CRs (2)

- Combined analysis predicts an energy dependence of the flux ratios in good agreement with AMS-02 data
- Propagation parameters (obtained from Sec/Prim) in good agreement with other cross section parametrizations
 - In the current analysis the scale factors are below 20% (~15% for B, ~5% for Li, Be)

FLUKA cross sections for gamma-ray production

- Study of the local emissivity (at latitudes 10° < |b| < 70°)
 - ISM composition with relative abundances of H : He : C : N : O : Ne : Mg : Si = 1:0.096 : 4.65 10^{-4} : 8.3 10^{-5} : 8.3 10^{-4} : 1.3 10^{-4} : 3.9 10^{-5} : 3.69 10^{-5}
- This quantity just depends on the cross sections of gamma-ray production and on the spectra of electrons, protons and He
 - Low-energy uncertainties due to solar modulation uncertainties!

$$\frac{Q_S(E_S)}{n_{gas}} = 4\pi \int J(E) \frac{d\sigma(E_S|E)}{dE_S} dE$$

Conclusions

- Cross sections are the main limitation for the studies of propagation of charged particles in the Galaxy
 - FLUKA is optimized to improve our predictions on CR interactions cross sections over a wide energy range and for every isotope
- The energy dependence of the B, Be and Li ratios predicted using the FLUKA cross sections is in good agreement with the AMS-02 data
- These cross sections allow us to simultaneously reproduce the different ratios of B,
 Be and Li and ³He within a set of propagation parameters
 - Well in agreement with the standard theoretical scenarios
- FLUKA helps us in using gamma-ray data to constrain the set-ups of CR propagation
 - Hadronic and leptonic gamma-ray production
- For more details see P. De La Torre Luque et al JCAP07(2022)008 arXiv:2202.03559

BACKUP

The FLUKA toolkit and the evaluation of cross sections for CR interactions

- o **FLUKA** is a general purpose tool that can be used to study electromagnetic and hadronic interactions of particles and their transport in arbitrarily complex geometries.
- Nuclear interactions are optimized in the range from the MeV up to tens of TeV and are treated in a Monte Carlo fashion.
- A code such as FLUKA allows us to precisely study the cross sections of any CR interacting with **any gas nucleus** and the formation of **long and short-living particles produced**, in the whole energy range for which we have experimental CR data.
- o FLUKA has been used in other CR studies as in Mazziotta, **P.D.L**. et al PRD 101(8):083011 (2020), as well as for other astrophysical applications as atmospheric neutrino studies (Astropart. Phys., 23:526–534, 2005) or gamma-ray flares from the Sun (Solar Phys., 294(8):103, 2019).

The FLUKA toolkit and the evaluation of cross sections for CR interactions

Nucleus-nucleus hadronic interactions are treated as following in FLUKA:

- o **Resonances** produced in hadron-nucleon inelastic collisions dominate from the MeV up to 3-5 GeV
- o Above 3-5 GeV hadronizations through <u>Dual Parton Model</u> (**DPMJET-3**) takes over
- o Extension to <u>hadron-nucleus</u> collisions is achieved <u>through the **PEANUT** model (GINC) + relaxation</u>
- O Nucleus-Nucleus use **Boltzmann thermal equation** at E<0.1GeV/u, **rQDM** model up to 5 GeV/u and **DPMJET** above

We have computed inelastic and inclusive cross sections of interactions of all isotopes of the CR nuclei up to Z=28 (Iron) with protons and helium, including a careful analysis of those short-living particles produced (ghost nuclei) from 1 MeV/n to 35 TeV/n.

The result is a set a cross sections of secondary CRs that can be used in CR propagation codes. We have also computed cross sections for gamma-ray production and those for secondary leptons, neutrinos and antiproton production will be soon investigated.

The FLUKA toolkit and the evaluation of cross sections for CR interactions

- o **Resonances** produced in hadron-nucleon inelastic collisions dominate from the MeV up to 3-5 GeV
- o Above 3-5 GeV hadronizations through <u>Dual Parton Model</u> (**DPMJET-3**) takes over
- Extension to <u>hadron-nucleus</u> collisions is achieved <u>through the **PEANUT** model (GINC) + relaxation</u>
- Nucleus-Nucleus use **Boltzmann thermal equation** at E<0.1GeV/u, **rQDM** model up to 5 GeV/u and **DPMJET** above

Phase shifts Resonance product data, eikonal and decay		ial	High Energy DPM nadronization
PEANUT Sophisticated GINC Gradual onset of Glauber-Gribov multiple interactions Preequilibrium Coalescence	E< 0.1GeV/u BME Complete fusion+ peripheral	0.1< E< 5 GeV/rQMD-2.4 modified new QMD	

Credit: Paola sala

FLUKA cross sections for gamma-ray production

Electrons require a doubly broken power-law in order to reproduce at the same time CR local measurements and **local γ-ray emissivity** at low energies

γ-ray production from different gas nuclei # Protons, He and electrons are treated with the force field approximation and need a break at around 8 GeV/n to fit well experimental data

SOLAR MODULATION

- Force-Field approximation
- ❖ Neutron monitor data + Voyager-01 data
- Cholis-Hooper-Linden (<u>arXiv:1511.01507</u>) correction

$$\Phi^{\rm TOA}(T) = \frac{2mT + T^2}{2m\left(T + \frac{Z}{A}\phi\right) + (T + \frac{Z}{A}\phi)^2} \Phi^{\rm IS}(T + \frac{Z}{A}\phi)$$

$$\phi^{\pm}(t, \mathcal{R}) = \phi_0(t) + \phi_1^{\pm}(t) \mathcal{F}\left(\frac{\mathcal{R}}{\mathcal{R}_0}\right)$$

SOLAR MODULATION

- Force-Field approximation
- ❖ Neutron monitor data + Voyager-01 data
- Cholis-Hooper-Linden (<u>arXiv:1511.01507</u>) correction

$$\Phi^{\text{TOA}}(T) = \frac{2mT + T^2}{2m\left(T + \frac{Z}{A}\phi\right) + \left(T + \frac{Z}{A}\phi\right)^2} \Phi^{\text{IS}}(T + \frac{Z}{A}\phi)$$

$$\phi^{\pm}(t, \mathcal{R}) = \phi_0(t) + \phi_1^{\pm}(t) \mathcal{F}\left(\frac{\mathcal{R}}{\mathcal{R}_0}\right)$$

Combined fit of light secondary CRs (3)

