Particle acceleration in core-collapse supernova remnant expanding inside the wind bubble

Samata Das, Robert Brose, Dominique M.-A. Meyer, Martin Pohl, Iurii Sushch

DESY and University of Potsdam

The 27th European Cosmic Ray Symposium 25 -29 July, 2022

Samata Das

Results

Overview

Introduction Wind-bubble Diffusive Shock Acceleration Numerical Methods Results Conclusions

The bubble nebula, NGC 7635, HST 2016 bubble created by BD+60°2522 (\approx 44 M_{\odot})

[Credit:NASA, ESA, Hubble Heritage Team]

Samata Das

Introduction ●○	Numerical Methods	Results 0000	Conclusions
Stellar wind bubble			

Schematic diagram of wind bubble Weaver et al. [1977]

Samata Das

 Mass loss during different evolutionary stages of massive star leads to create wind bubble

$$ho_{wind}(r) = rac{\dot{M}_{\star}(t)}{4\pi r^2 v_{wind}(t)}$$

- Massive star explodes as core-collapse supernova which evolves through the modified circumstellar medium (CSM) before the Interstellar medium (ISM)
- The complex environment of CSM, hydrodynamics and magnetic field should have impact on generated particle spectra and emission.

Applied Codes- Radiation Acceleration Transport Parallel Code (**RATPaC**) to study particle acceleration, **PLUTO** for hydrodynamics

Solve the equations

- in one dimensional spherical symmetry
- on a co-moving grid for CR transport equation, and turbulence

Introduction	Numerical Methods	Results	Conclusions
00	00000	0000	00
Diffusive Shock Acceleration			

DESY and University of Potsdam

Introduction	Numerical Methods	Results	Conclusions
00	००●०००	0000	
Diffusive Shock Acceleration			

DESY and University of Potsdam

Introduction	Numerical Methods	Results	Conclusions
	000000		
Diffusive Shock Acceler	ation Model descriptions		

Hydrodynamics

- Evolution of wind bubbles created by progenitor stars with 20M_☉, 60M_☉ ZAMS mass using pre-calculated stellar evolutionary tracks (Groh et al. [2014] and Geneva grids of stellar evolution models).
 - ► Post Main-sequence evolution 20M_☉-Red Supergiant phase 60M_☉-Luminous Blue Variable +Wolf Rayet phases
- Introduced supernova explosion in pre-supernova CSM.

Diffusion coefficient prescriptions

- Bohm-like diffusion(D_r)= $\zeta \frac{v}{3}r_g(r, p)$; $\zeta = 10$ [time-independent]
- Alfvenic diffusion- $D_r = \frac{4v}{3\pi} r_g \frac{U_m}{E_w}$ [time-dependent]
 - U_m \Rightarrow energy density of ambient magnetic field

Samata Das

Introduction	Numerical Methods ○○○○○●	Results 0000	Conclusions
CSM magnetic field (B)		

Introduction	Numerical Methods	Results ●000	Conclusions
FS Parameters			

Introduction 00	Numerical Methods	Results ○●○○	Conclusions
Spectra-Volume-average	ed FS downstream [60 <i>M</i> ⊙	

Bohm – like diffusion

Alfvenic diffusion

Samata Das

DESY and University of Potsdam

Introduction 00	Numerical Methods	Results ००●०	Conclusions
Cosmic-ray escape [60/	M_{\odot}		

Alfvenic diffusion-The diffusion

coefficient increases at later times, hence particles at higher energies diffused in the upstream region would not participate in the shock acceleration mechanism.

Downstream spectra-Spectra become rapidly softer at later times around above 1-10GeV, **signature of particle** "escape" from downstream to upstream

The spectral index of obtained total production spectra is harder than the downstream particle spectra

Samata Das

Proton number – spectra

Alfvenic diffusion

Proton number – spectra

Samata Das

DESY and University of Potsdam

Introduction	Numerical Methods	Results 0000	Conclusions ●○
Conclusions			

- The stellar evolutionary stages, ZAMS mass, rotation, and metallicity of progenitor stars have significant roles in spectral modification.
- The spectral shape depends on the temperature of bubble, and FS interactions. Although, the considered diffusion models have extensive effects on spectral index, softer spectra are prominent during the FS evolution inside hot bubble for $60M_{\odot}$.
- In Alfvenic diffusion, rapid particle escape from downstream above 1-10GeV at later times produces the softer downstream spectra at higher energies.
- CSM magnetic field as well as diffusion play significant role in emissions from the spectra and in remnant morphology.

For more details regarding this study, please go through

"Leptonic non-thermal emission from supernova remnants evolving in the circumstellar magnetic field"-Sushch et al. 2022, ApJ, 926,140 -Impact of CSM magnetic field on SNR emission

"Spectral softening in core-collapse supernova remnant expanding inside wind-blown bubble"- Das et al. 2022, AA, 661, A128 - Extensive study of particle acceleration with Bohm diffusion for SNR with $60M_{\odot}$ progenitor

Introduction	Numerical Methods	Results	Conclusions
			00

Thank You for your attention!