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Source Generator and Datasets

The Fermi Large Area Telescope (LAT) has been in orbit of Earth since 2008 col-
lecting gamma rays. One challenge in analyzing LAT data is detecting sources to
know the various classes of gamma-ray sources and how many they are. Neural
networks show impressive accuracy in many fields. Application of these networks
to Fermi LAT data can potentially be more successful than traditional statistical
methods of source detection. Here we present our first attempt to use a region-
based convolutional neural network (Faster R-CNN) and then a Mask R-CNN,
which has built-in instance segmentation, something that networks previously ap-
plied to data lack. We have generated three training and test datasets of sim-
ulated Fermi LAT images with different parameters such as noise and photon
counts. These were used to separately train Facebook Al's Mask R-CNN model
with a ResNet-50 backbone and feature pyramid network for instance segmenta-
tion of sources. We found this method to be promising and we present here our
preliminary results.

We also discuss our current effort to create a new package based on Meta’s
Detectron2 research repository which would allow us to test different network
configurations on simulated, binned LAT data.

Introduction

Fermi-LAT detects gamma rays at energies between 30 MeV and 300 GeV. The
response of LAT to a source can be roughly approximated by a 2-dimensional
Gaussian. Traditionally, sources are detected in LAT data with a maximum like-
lihood analysis. This method depends on estimates of the non-point-source sky
which introduce uncertainty, e.g. approximating interstellar emission from cosmic-
ray interactions. Sources are fitted one by one but simultaneous detection of all
sources is desirable for consistency. Machine learning may overcome these defi-
ciencies, and therefore we are investigating the performance of various architec-
tures.

Two important machine learning tasks are object detection and instance segmen-
tation. Object detection is the localization of objects and instance segmentation
Is both the localization of objects and the delineation of separate objects with a
mask. Neural networks involve layers of nodes that depend on representations, or
transformations, of input [1]. A Mask R-CNN (region-based convolutional neural
network) uses a multi-task loss function that combines the loss of classification
(what class of object is this?), localization (where is this object?), and segmenta-
tion (what are the boundaries of this object?). The classification loss £, IS @
log loss function over two classes (background or object of interest). The local-
ization loss L., Is a smooth L1 loss. The segmentation loss L., is the average
binary cross-entropy. The multi-task loss to be minimized is therefore

L= Lclass + 'Clocal T £869°

In Meta Al’'s configuration of a Mask R-CNN, multi-task loss is minimized via the
Adam optimizer algorithm, an extension of stochastic gradient descent that is
more well-suited for noise-related issues than gradient descent. A Mask R-CNN
Is built on a Faster R-CNN, which is only capable of object detection.

In training neural networks, the hyper-parameters of base learning rate, momen-
tum, gamma, batch size, and epoch are often used. A network’s optimization
algorithm will start with the base learning rate, will accelerate according to the
momentum, will reward itself according to the gamma, and will sample a number
of images given by the batch size from the dataset for propagation. An epoch is
how many times a model propagates every example in the dataset.

A pipeline for dataset generation was made with a source generator, a Python class which
generates an annotated corresponding 400 by 400 pixel jpeg. This pipeline can either gen-
erate corresponding .xml files in Pascal VOC format or a .json file in COCO format. Per each
image, an empty 2-dimensional array was created and filled with a 2D Gaussian(s) centered
at each coordinate of a source. A background constant was added to each pixel, which were
then transformed by a Poisson random number generator to some integer. For sources, the
latitudinal and longitudinal coordinates, photon counts, and Gaussian width were used as
parameters. For each patch of sky (and corresponding jpeg) generated, the background
constant, number of sources, and pixel size were also parameters. Three training and test
sets were generated. The first test set is 8 images with 15 sources in each image. The
second and third test sets are 13 images that have either zero sources or 15 sources. All
test sets have the same variation in source parameters as their corresponding train set.

# Set | # Images | Counts Gaussian Width | Background Constant | # Sources
1 400 1000-5000|0.5-1.5 2.0-8.0 3-6
2 800 800-5000 |0.5-1.5 2.0-10.0 3-6
3 1200 500-5000 | 0.5-1.5 2.0-12.0 3-6

Fig. 1: Parameters for each of the training sets.

Fig. 2: Un-annotated and annotated image from the second test dataset, there are 15 sources in this image.

Faster R-CNN and Mask R-CNN

A Faster R-CNN through the Detecto package was first trained. Then, a Mask R-CNN from
Meta Al's Detectron2 model zoo was trained and tested on all datasets separately. The
following hyper-parameters were used:

* The base learning rate is the learning rate that gradient descent or another optimization
algorithm will start with.

 The momentum is the moving average of past gradients and is used to accelerate the
gradient in the correct direction.

 The gamma parameter is between 0 and 1 and is a quantification of algorithm rewards.
* The batch size is the number of images that the model takes and propagates.
« An epoch occurs when the model has propagated every example in the dataset.

The hyper-parameter values of the model trained on the first, second, and third datasets
were: a base learning rate of 0.01, 0.02, 0.02, a momentum of 0.9, 0.9, 0.9, a gamma
parameter value of 0.5, 0.5, 0.5, and a batch size of 3, 3, and 3 respectively. Total epochs

A false positive (FP) denotes a detection where there is no source and a false
negative (FN) denotes a failure to detect a source. A true positive is when a
source is correctly predicted and a true negative is when it is correctly not pre-
dicted. We have, per pixel,

True Positives + True Negatives
All Detections '

The ratio of intersection over union (IOU) is the ratio of intersection between
bounding box area predicted by the model and real bounding box area to the
area of the union of the two. Metrics used to measure performance were average
precision (AP) over 10 IOU values from 0.50 to 0.95, the Pascal VOC average
precision metric (AP50), where AP is calculated across one I0OU value of 0.5, a
strict average precision metric (AP75) calculated across an 10U value of 0.75,
and the average recall (AR). The rates of false negatives and positives and the
accuracy were also generated. All metrics show the model is capable of accurate
source detection.

Accuracy =

# Set| Task |AP |AP50 |AP75|/AR |FN [FP
1 bbox |83.72|100.00|97.82|0.874
segm | 80.09 |100.00 |97.82|0.839|0.032|0.088 | 95.31 %
2 bbox |81.62|100.00 | 94.57 | 0.846
segm [84.08 | 100.00|97.81 1 0.870|0.034 | 0.112|94.45 %
3 bbox [71.19/97.01 |86.35/0.744
segm | 73.60|97.01 |88.43|0.767|0.052|0.119|92.94 %

Accuracy

Fig. 3: Metrics for all sets and tasks. All metrics are evaluated on the test set.

Package Development

Our source generator simulates single-channel images and therefore the trained
models are only capable of performing detection on a single energy bin. We
began developing a package for simultaneous detection on multiple energy bins.
This package is based on Meta Al's detectron2 package for deep learning re-
search and will allow users to test different architectures on simulated and binned
Fermi LAT data.
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Fig. 4. Simulated data across 3 different energy bins shown here, courtesy of Saptashwa Bhattacharyya.
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