Imprints of the Galactic Magnetic Field on Gamma-Ray Data

Elena Orlando

University of Trieste & Stanford University

ECRS 2022

Elena Orlando

ECRS 2022

Results: Spectral Effects on the Interstellar Models

Results: Local Interstellar **e+e-**& Different Propagation Scenarios

Synchrotron Spectrum

Local HI Gamma-Ray Emissivity

Results: Spatial Effects on the Inverse-Compton Templates

Results: Effect on Inverse Compton (IC)

Results: Cosmic Rays & B-fields

Orlando (2019) Phys.Rev.D 99, 043007

ECRS 2022

Elena Orlando

12

Results: Effect on Inverse Compton (IC)

Orlando (2019) Phys.Rev.D 99, 043007

Updated B-fields produce a brighter IC in the inner Galaxy than predicted by standard models and the difference increases with energy

Total B-field

Orlando (2019)

Gamma-Ray Predictions at MeV (e.g. GECCO, AMEGO, etc.)

see Bottacini's talk on GECCO see Tibaldo's talk on MeV missions' overview

Orlando (2018) MNRAS 475, 2724

Orlando (2019) Phys.Rev.D 99, 04300 Elena Orlando

Summary: Our Multimessenger Study

Summary: Effects on the IC spatial templates

Updated B-fields produces a more peaked IC in the inner Galaxy than predicted by previous models for any photon field model used

(IC old – IC new) / IC old

Local HI Gamma-Ray Emissivity

Derived Proton Spectrum

