

27th European Cosmic Ray Symposium

A new mode change in the variable gamma-ray pulsar PSR J2021+4026

<u>A. Fiori</u>¹, M. Razzano¹, P. M. Saz Parkinson², R. Mignani³ on behalf of the *Fermi*-LAT Collaboration

1 Università di Pisa & INFN – Pisa 2 University of Hong Kong & University of California at Santa Cruz 3 INAF IASF – Milano

The Fermi Large Area Telescope

- Main instrument of the *Fermi* Gamma-ray Space Telescope
- NASA mission, operative since June 2008
- Pair-conversion telescope (Atwood et al., 2009)
- Sensitive to gamma rays above 20 MeV
- >5000 gamma-ray sources detected (4FGL-DR2; Abdollahi et al., 2020)
- ~300 gamma-ray pulsars *

* https://confluence.slac.stanford.edu/display/GLAMCOG/ Public+List+of+LAT-Detected+Gamma-Ray+Pulsars/pulsars

The variable PSR J2021+4026

- Isolated, radio-quiet gamma-ray pulsar in the Gamma Cygni SNR
- First discovered with *Fermi* LAT with period ~ 265 ms (Abdo et al. 2009)
- X-ray counterpart (Weisskopf et al. 2011) and pulsations (Lin et al. 2013)
- Abrupt and simultaneous flux and spin-down variations (Allafort et al. 2013)
- Repeated mode changes (once every few years)

Previously observed events

- Flux from likelihood fit to 30day intervals
- Switching between two states with different flux levels
- Recovery delayed by ~ 3.5 years

Continuous monitoring ...

Analysis setup

Maximum likelihood fit with summed LAT PSF components and photon weights *

Data Selection

T start:	MJD 54683 (Aug 5, 2008)
T stop:	MJD 59493 (Oct 6, 2021)

RA center:	305.805
DEC center:	40.444°
ROI radius:	10°
Pixel size:	0.1°

Model

Includes 4FGL sources within 20°

Free parameters:

- Distance < 3.5°
- Variable sources in the field
- PSR J2021+3651

Fixed parameters:Faint sources (< 5σ)

Energy range: 100 MeV – 300 GeV Energy bins: 35

* https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/weighted_like.pdf

A. Fiori

A new mode change!

- Recovery of the February 2018 flux drop
- Located around June 2020 (earlier than expected)

$$F_{\gamma}(T) = \begin{cases} F_{0} & \text{if } T < T_{0} \\ F_{0} + \frac{(F_{1} - F_{0})}{(T_{1} - T_{0})} (T - T_{0}) & \text{if } T_{0} \le T < T_{1} \\ F_{1} & \text{if } T \ge T_{1} \end{cases}$$

- Results from a best fit:
 - $\Delta F_{\gamma}/F_{\gamma} = (12 \pm 2) \%$

$$T_o = MJD 58950 \pm 40$$

 $T_{1} = MJD 59080 \pm 50$

 Event centered in ~ MJD 59010 (Jun 10, 2020)

Evolution of flux and spin-down

Spectral variability

$$\frac{dN}{dE} \propto \begin{cases} \left(\frac{E}{E_0}\right)^{\gamma_0 - \frac{d}{2}\ln\frac{E}{E_0} - \frac{db}{6}\ln^2\frac{E}{E_0} - \frac{db^2}{24}\ln^3\frac{E}{E_0}} & \text{if } |b\ln\frac{E}{E_0}| < e^{-2} \\ \left(\frac{E}{E_0}\right)^{\gamma_0 - \frac{d}{b}} \exp\left[\frac{d}{b^2}(1 - (\frac{E}{E_0})^b)\right] & \text{otherwise} \end{cases}$$

 $E_o = 2 \text{ GeV}$

- Maximum likelihood fit to intervals between events
- Softer spectrum when the flux is low $(\Delta \gamma/\gamma \sim 5\%)$
- Variability with ~3 sigma significance

Pulse profile

- Phases computed with a full-mission timing solution (Ajello et al. 2021)
- Maximum likelihood fit with photon probabilities in different time intervals

$$N(\phi) = const + \sum_{i=1}^{3} A_i \exp\left[-\frac{(\phi - \mu_i)^2}{2\sigma_i^2}\right]$$

- Change in pulsed-to-constant components ratio
- Weak variations in the relative peak amplitudes
- Indications of a gamma/X-ray phase shift after the 2014 event (M. Razzano et al., in prep.)

The nature of PSR J2021+4026

Li et al. (2012)

$$\frac{L}{L_0} = 0.3 + 0.3 \log(\sigma/\Omega)^2 + 1.2 \sin^2 \alpha , \ (\sigma/\Omega)^2 > 0.4;$$

$$\frac{L}{L_0} = 0.2 + 0.08 \log(\sigma/\Omega)^2 + (1.3 + 0.2 \log(\sigma/\Omega)^2) \sin^2 \alpha,$$

$$0.004 < (\sigma/\Omega)^2 < 0.4.$$
(9)

Pétri (2022)

A. Fiori

$$\mathbf{j} = \rho_{\rm e} \, \frac{\mathbf{E} \wedge \mathbf{B}}{E_0^2/c^2 + B^2} + (|\rho_{\rm e}| \, + 2 \, \kappa \, n_0 \, e) \, \frac{E_0 \, \mathbf{E}/c^2 + B_0 \, \mathbf{B}}{E_0^2/c^2 + B^2}$$

- Results suggest a variation of the whole magnetospheric structure
- Current pulsar models do not take account of variability
- Spin-down vs. conductivity and pair multiplicity from equations for radiative magnetospheres
- Non-linear relation between k and luminosity
- PIC simulations (Kalapotharakos et al. 2018) may produce the observed ΔF_{γ} / $F_{\gamma} \sim 15\%$

Conclusions

- First and only variable isolated gamma-ray pulsar
- Maximum likelihood fit to Fermi-LAT fully characterizes the observed mode changes
- Theoretical discussion currently limited to semi-quantitative estimates

 Continuous monitoring may provide further information about variability in gamma-ray pulsars

To be continued...

References

Abdo et al. 2009. ApJ, 700, 1059. Abdollahi et al. 2020. ApJS, 247, 33. Ajello et al. 2021. ApJS, 256, 12. Allafort et al. 2013. ApJL, 777, L2. Atwood et al. 2009. ApJ, 697, 1071. de Jager & Busching. 2010. A&A, 221,180. Kalapotharakos et al. 2018. ApJ, 857, 23. Li et al. 2012. ApJ, 746, 12. Lin et al. 2013. ApJL, 770, L9. Ng et al. 2016. ApJ, 825, 18. Pétri 2022. MNRAS, 512, 2854. Takata et al. 2020. ApJ, 890, 16. Weisskopf et al. 2011. ApJ, 743, 74.

Thank you for listening!

Alessio Fiori

Dipartimento di Fisica, Università di Pisa & INFN - Pisa Room 69 Building C Largo B. Pontecorvo, 3 56127 Pisa, Italy e-mail: alessio.fiori@phd.unipi.it