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Systematics Uncertainties on Hadronic Models in the 100
GeV - 100 TeV Range

R D Parsons, H Schoorlemmer, A Pastor-Gutierrez
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Ran full simulations of CTA array of IACTs using
different model

Predicted sensitivity differs by up to 40%
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We ran a large number of vertical showers using EPOS
LHC, SIBYLL 2.3c, QGSJetll-04 and UrQMD
UrQMD as low energy model (80 GeV crossover)
Simulate at 100 GeV, 1 TeV, 10 TeV and 100 TeV
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Differences up to 60%
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Muon Spectrum at Ground Level
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The differences we see in both QGSJet and and SIBYLL
clearly come from a high energy muons at ground level

UrQMD deficit comes from lower energy muons
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Why is the huge difference? (100 TeV)

N this energy range the air shower proceeds as one woulo
normally picture

There many generations of hadron production

\Vost electrons at ground originate EM cascades within the
shower

Muons originate from the decay of pions close to Xmax

Excess in low energy pions @ 100 GeV lead to more muons
for EPOS




Why is the huge difference? (100 GeV)

At 100 GeV the shower looks rather different
There are only a few generations of pion production

Most muons on ground come from the first or second
generation of pions

Only muons above a few GeV reach the ground without
decaying

Many electrons come from muon decay close to ground
level

L eads 1o an equivalent increase in EM energy deposit

First interaction is clearly very
important here, so lets take a
closer look...




Investigating First Interactions Pion spectrum at first
Interaction point
(Spectrum)
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More low energy pions, few high energy




Investigating First Interactions
(Transverse Momentum)
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Transverse momentum transter very different between models
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Investigating First Interactions

This difference In first interaction matches well with observed shower behaviour

Any muons from our first interaction with an energy below about 3 GeV will decay
before reaching the ground

QGSJet and SIBYLL both produce an excess of energetic muons (UrQMD a deficit until
20 GeV)

QGSJet muons stay closer to the shower core due to lower pt

Muon decays lead also to differences in EM signal
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Investigating First Interactions Nuclons __[5, .51
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InveStigati ng Fi rst Inte ractions ?‘uai gillcfnelgences seen in low inelasticity vs high, especially
(I neIaStiCity) Primarily due to the much larger number of low

inelasticity showers in UrQMD

Muon Number EM energy deposit
o 3 x10°, bttt bttt 8 x10°, e S S Air shower effectively starts deeper in the atmosphere
£ ' ' ' = : LP: Nucleons
< ? 6- Bl ErOs-LHC | |
2: - O, B QGSJetll-04
T < B sIBYLL 2.3c
= Bl uramp i
-5 K
. ;;;;.;;;;;:;;:;:." But no large difference in difference muon

—t Tttt number vs inelasticity

All events LP: Nucleons
[ ]EPOS-LHC [ ]EPOS-LHC
[ ] QGSJetll-04 | |[ ] QGSJetll-04
[ ]SYBILL2.3c ||[ ]SYBILL 2.3c
[ JurQMD

® o
N

(o))
1
“
’
T

I

dE.,/dA [GeV m™]
S

1
1

2_ .......................................................................... - -
0 ? : 1 0 T f\':‘:f—?t ~-«” —Eo=am ' -------- o | 3.5 - é § z : : E i
0 100 200 300 [r#])o 0 100 200 300 [r%?o o 01 02 03 04 05 06 07 08 06
, r 1 02 03 04 05 06 07 08 O

K

15



Summary

As we push towards the next generation of ground-based gamma-ray telescopes (making precision
measurements) understanding the systematics of background simulations becomes very important

[t is already rather clear that the background predictions vary greatly from model to model

This extends even to rather basic ground level predictions, most notably at the low energy boundary of 100
GeV

The differences in ground level predictions at 100 GeV come directly from differences in first interaction
properties

These differences are concerning not only for 100 GeV showers as we are almost on the boundary between
HE & LE interaction models

Probably stem from lack of tuning data for the models, both from accelerators and ground-based detectors

0-O runs at LHC, specifically including analysis from LHC and other forward detectors my help from one side

May need a concerted effort from the current generation of gamma-ray instruments to provide comparison of
ground-level measurables (muon number, shower shape etc)




