

Cosmic-ray measurements by reconstructing longitudinal shower profiles for the Cherenkov Telescope Array

Andrés Delgado^{1, 2}

¹Kapteyn Astronomical Institute, University of Groningen

²Sao Carlos Institute of Physics, University of Sao Paulo

with Manuela Vecchi¹ and Vitor de Souza²
on behalf of the CTA Consortium

ECRS, 28th of July 2022

Outline

- Shower profile and shower maximum
- Reconstruction of particle shower longitudinal profile
- The Cherenkov Telescope Array
- Preliminary results
- Conclusions

Scientific motivations

Develop an analysis chain that allow CTA to be also a cosmic-ray experiment by reconstructing:

- Particle shower longitudinal profile
- Shower maximum (Xmax)

$$X_{max} \propto \ln\left(\frac{E_0}{A}\right)$$

Gaisser-Hillas function

$$N(X) = N_{max} \left(\frac{X - X_0}{X_{max} - X_0}\right)^{\frac{X_{max} - X_0}{\lambda}} e^{\frac{X_{max} - X}{\lambda}}$$

Pierre Auger Collaboration - 2014

Scientific motivations

- Current methods to measure Xmax with ground-based observatories:
 - Likelihood fitting (e.g. HESS, resolution 30 g/cm² below 1 TeV)
 - Machine learning techniques (e.g. CTA)
 - Reconstruction of the shower profile from the fluorescence light (e.g. Pierre Auger Experiment, resolution 15 g/cm²)

 Objective: reconstruct the shower profile from the Cherenkov light and get the Xmax

Cherenkov Telescope Array

Cherenkov Telescope Array

- CTA will be the world's largest ground-based gamma ray observatory for energies from 20 GeV to 300 TeV:
 - 5-10 x more sensitive
 - 5 x better angular resolution
 - 2.5 x larger field of view
- CTA telescope technology:
 - Small-sized for multi TeV
 - Medium-sized for TeV
 - Large-sized for GeV

Reconstruction of the particle shower longitudinal profile

How can we reconstruct the particle shower longitudinal profile?

 Direction of the image is related to the direction of the shower of the gamma

How can we reconstruct the particle shower longitudinal profile?

Particle longitudinal profile

How to go from these Cherenkov profiles to the particle longitudinal profile?

Angular distribution of Cherenkov light

The shower profile is reconstructed considering the angular distribution of the Cherenkov light around the shower axis.

$$\Delta N_C(X_i) = f(\theta_{ij}, s_i, X_i) \Delta \theta_{ij} \Delta N_e(X_i) \Delta X$$

Cherenkov photon profile

Cherenkov light angular distribution

particle shower profile

Preliminary results

Simulated events

- CTA-South array configuration
- Telescopes: 25 Medium-Sized Telescopes (MST)
- Species and number of air showers used:
 - Proton: 3019 showers from 10 to 300 TeV
 - Iron: 4712 showers of specific energy bins of 10 TeV, 30 TeV, 50
 TeV, 100 TeV and 300 TeV.
- Zenith angle: 20 degrees

Example: reconstructed proton-initiated shower profile

 Performing the reconstruction using all available telescopes results in a 'noisy' measurement.

- How can we identify telescopes which show the best profile?
 - (X_{max} rec X_{max} true)vs variables

Quality cuts

- Number of triggered telescopes (MST)
- Number of islands in the camera image
- Position of the ellipse's center
- Telescope distance w.r.t shower core

Quality cuts

- Number of triggered telescopes (MST)
- Number of islands in the camera image
- Position of the ellipse's center
- Telescope distance w.r.t shower core

Example: reconstructed proton-initiated shower profile

before quality cuts

after quality cuts

Example: reconstructed proton-initiated shower profile

- Average profile from three telescopes.
- Gaisser-Hillas function adjusted around the maximum
- Xmax rec matches with xmax simulated.

Resolution of the Xmax reconstructed

- Difference distribution between reconstructed and simulated Xmax for events in the energy range from 10 TeV to 300 TeV.
- Resolution of 30 g/cm² for proton-initiated showers and 35 g/cm² for iron-initiated showers.

Conclusions

- The synergy between CTA and cosmic-ray experiments could allow complementary cosmic-ray measurements.
- We studied a method to reconstruct the full shower profile using multiple telescopes for measurements of cosmic-ray observables like the Xmax with the CTA.
- Preliminary results on CTA simulated events show good Xmax resolutions from 10 TeV to 300 TeV:
 - 30 g/cm² for proton-initiated showers and
 - 35 g/cm² for iron-initiated showers,

compared with previous methods such as likelihood fitting with resolution of 30 g/cm² below 1 TeV.

Thank you for your attention

Backup slides

Characteristics of cosmic and gamma ray air showers

CTA technology

Quality cuts

- Number of triggered telescopes (MST)
- Number of islands in the camera image
- Position of the ellipse's center
- Telescope distance w.r.t shower core

