

COSINUS: Direct dark matter detection using NaI as a cryogenic calorimeter

Rituparna Maji on behalf of the COSINUS collaboration TU Wien and HEPHY, Vienna, Austria | rituparna.maji@oeaw.ac.at

Der Wissenschaftsfonds.

Possible dark matter detection channels

Direct dark matter detection techniques

Direct dark matter detection techniques

Direct dark matter detection techniques

Direct detection dark matter techniques

Direct detection dark matter experiments

How to compare results?

How to compare results?

Status of direct dark matter search

• No DM signal observed by most of the experiment!

ECRS|JULY 25TH 2022

Status of direct dark matter search

- No DM signal observed by most of the experiment!
- DAMA/LIBRA experiment claims to observe DM
- The DAMA/LIBRA signal has not entirely been cross-checked and excluded by experiments using the same target material

ECRS|JULY 25TH 2022

Annual modulation of dark matter

Annual modulation of dark matter

The DAMA/LIBRA signal

- Period and phase match with DM expectation
- No convincing non-DM explanation

Decade long tension!!

Decade long tension!!

• DM event rate is material-dependent

ECRS|JULY 25TH 2022

Decade long tension!!

- DM event rate is material-dependent
- APPEC Recommendation: "The long-standing claim from DAMA/LIBRA [...] needs to be independently verified using the same target material."
- Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches (COSINUS) aims to validate DAMA/LIBRA with a model-independent test: <u>Felix Kahlhoefer, FR,</u> <u>et al</u> <u>JCAP05(2018)074</u>

NaI based direct detection DM experiments

NaI based direct detection DM experiments

Rituparna Maji

Cryogenic detector

Cryogenic detector: TES

Heat Bath @10 mK

Phonon signal Resistance (mΩ) TES X ΔR ΔE $\Delta T \propto$ mm \sim 10 ΔΤ Temperature (mK) -50 50 100 150 200 250 Time (ms) Absorber

• Transition edge sensor (TES) can detect very small rise in temperature due to small energy deposition

But NaI is not so NaIce

- Direct deposition of TES on Nal is non-trivial
- First idea of **remoTES**: <u>M. Pyle et</u> <u>al. in 2015 arXiv:1503.01200</u>
- First successful operation of the working design of remoTES by COSINUS: <u>https://arxiv.org/abs/2111.00349</u>

Phonon detector: NaI + remoTES

- Phonon signal is readout by Nal + TES, independent of particle type
- precise measurement of the deposited energy

Phonon detector

Light detector: Si + TES

- Phonon signal is readout by Nal + TES, independent of particle type
- precise measurement of the deposited energy
- Scintillation light signal is readout by Si + TES, depends on particle type
- Dual channel read-out enables event discrimination

-50

a de la contra de la

Phonon detector

light detector

Light

 ΔE

250 Time (ms)

COSINUS

The COSINUS detector

- Phonon signal is readout by NaI + TES, independent of particle type
- precise measurement of the deposited energy
- Scintillation light signal is readout by Si + TES, depends on particle type
- Dual channel read-out enables event discrimination

Phonon detector

light detector

ECRS|JULY 25TH 2022

Signal to background discrimination

ECRS|JULY 25TH 2022

Signal to background discrimination

ECRS|JULY 25TH 2022

Signal to background discrimination

ECRS|JULY 25TH 2022

Physics reach of COSINUS 1π

ECRS|JULY 25TH 2022

Event discrimination with NaI remoTES

- Underground run in June 2022 @ LNGS, Italy
- Calibration done with 57Co and 55Fe sources

Event discrimination with NaI remoTES

- Underground run in June 2022 @ LNGS, Italy
- Calibration done with 57Co and 55Fe sources
- Best achieved threshold with remoTES in underground run: < 2 keV

LNGS: Laboratori Nazionali del Gran Sasso

ECRS|JULY 25TH 2022

LNGS: Laboratori Nazionali del Gran Sasso

ECRS|JULY 25TH 2022

LNGS: Laboratori Nazionali del Gran Sasso

ECRS|JULY 25TH 2022

LNGS: Laboratori Nazionali del Gran Sasso

ECRS|JULY 25TH 2022

LNGS: Laboratori Nazionali del Gran Sasso

ECRS|JULY 25TH 2022

ECRS|JULY 25TH 2022

ECRS|JULY 25TH 2022

COSINUS 1π time schedule

The **COSINUS** collaboration

UNIVERSITÀ DEGLI STUDI DELL'AQUILA

HELSINKI INSTITUTE OF PHYSICS

Thank You!

Rituparna Maji | 📧 rituparna.maji@oeaw.ac.at

Der Wissenschaftsfonds.

Quenching factor mystery

COSINUS

- QF = The ratio of the scintillation light produced by nuclear recoil and electron recoil
- NR energy scale depends on QF
- Measurement of QF of Nal do not agree, especially in the low energy region
- QF measurement at room temperature required
- COSINUS would provide the first cryogenic measurement of quenching factor

Reported Quenching factor values for Na recoils

Quenching factor measurement

ollar 2013 (

Simon 2003

- **Room temperature** measurement
- Aim: study the effect of **TI** • dopant on QF
- Aim: Investigation in the low energy region
- **5** radio-pure **Nal(TI)** crystals • produced by SICCAS
- Energy calibration with **Am**, • **Ba**, **Cs** source and with **neutrons** (~1.5 MeV)
- Preliminary QF analysis • (Manuscript in preparation)

ECRS JULY 25TH 2022

25 E nr (keV)