Asymmetries in the lateral distributions of signals measured by surface-detector arrays

Institute for Astroparticle Physics (IAP) Karlsruhe Institute of Technology (KIT)

July 26, 2022

Helena Lamprecht, Quentin Luce, Markus Roth, David Schmidt, Darko Veberic

Sampling the lateral distributions of extensive air showers

Need: Shower axis, shower size, and core (at least as a stepping stone)

Plots adapted from: Auger Collaboration, 2020 JINST 15 P10021, Reconstruction of events recorded with the surface detector of the Pierre Auger Observatory

Sources of asymmetry

Sources of asymmetry

*Lukas Armbruster, Bachelor thesis, Asymmetries of the Lateral Distribution of Particles at the Ground

Asymmetry

Simulations

Primaries:	p, Fe
Hadronic interaction models:	EPOS-LHC, QGSJet II-04
lg(E/eV):	[18.5, 20.0]
θ/°:	[0, 60]
Detectors:	Water Cherenkov Detector 1.2 m depth, 1.8 m radius
	Scintillator 1 cm thickness, 4 m ² area

Amplitude of asymmetry

Increasing amplitude with distance from shower axis at distances ≤ 500 m

Beyond ~500 m, relatively distance-independent amplitude

Amplitude of asymmetry

Water-Cherenkov Detector

Amplitude of asymmetry

lg(E/eV): [19.5, 19.6]

Impact of taking asymmetries into account

For 1500 m isometric triangular grid of water-Cherenkov detectors (Auger-like)

Impact of taking asymmetries into account

For 1500 m isometric triangular grid of water-Cherenkov detectors (Auger-like)

Impact of taking asymmetries into account

For 1500 m isometric triangular grid of water-Cherenkov detectors (Auger-like)

Negligible bias in arrival direction (< 0.1°) and S(1000) and change therein with correction) negligible

Summary

- Asymmetries in simulated signals with relative amplitudes of up to 25% (40%) for water-Cherenkov (scintillator detectors)
- Interplay between geometric and attenuative effects and signal fraction from different shower components
- Dependencies on distance to shower axis and zenith angle
- Biases of ~40 m in core position if not taken into account
- Improvement in core resolution of up to 50% if taken into account

For details (e.g. functional forms of the asymmetry parameterizations in r, θ , and S(1000)), please see upcoming proceeding

Mass dependence

Parameterization

$$S(r,\zeta) = S_{1000} f_{\rm LDF} [1 + b(r,\theta,\log(S_{1000}))\cos\zeta]$$

$$b(r,\theta,\log(S_{1000})) = k(\theta,\log(S_{1000})) \operatorname{erf}\left(\frac{r}{r_0(\theta,\log(S_{1000}))}\right)$$

$$k(\theta, \log(S_{1000})) = \frac{k_0 + k_1 \sin^2 \theta}{1 + \exp\left(-\frac{\sin^2 \theta - k_2(\log(S_{1000}))}{k_3(\log(S_{1000}))}\right)}$$

 $r_0(\theta, \log(S_{1000})) = r_1(\log(S_{1000})) + r_2(\log(S_{1000}))\sin^4\theta$

