Asymmetries in the lateral distributions of signals measured by surface-detector arrays

Helena Lamprecht, Quentin Luce, Markus Roth, David Schmidt, Darko Veberic

Institute for Astroparticle Physics (IAP)
Karlsruhe Institute of Technology (KIT)

Sampling the lateral distributions of extensive air showers

$$
\begin{array}{ll}
\text { Aim: } & \text { Energy and arrival direction (+mass) } \\
\text { Need: } & \text { Shower axis, shower size, and core (at least as a stepping stone) }
\end{array}
$$

Sources of asymmetry

Sources of asymmetry

- Different degrees of atmospheric attenuation

$$
f_{\mathrm{att}}(d)=\exp \left(\frac{d}{\lambda}\right)
$$

- Different solid angle of detectors

- Angular distribution of produced particles

$$
\operatorname{ADF}(\delta)=\left(\frac{\delta}{\delta_{0}}\right)^{-\gamma}
$$

4

Asymmetry

Impact of asymmetry

Impact of asymmetry

For 1500 m isometric triangular grid of water-Cherenkov detectors (Auger-like)

Simulations

Amplitude of asymmetry

Increasing amplitude with distance from shower axis at distances $\leqslant 500 \mathrm{~m}$

Beyond $\sim 500 \mathrm{~m}$, relatively distance-independent amplitude

Amplitude of asymmetry

Amplitude of asymmetry

$\lg (\mathrm{E} / \mathrm{eV}):[19.5,19.6]$

Impact of taking asymmetries into account

For 1500 m isometric triangular grid of water-Cherenkov detectors (Auger-like)

Impact of taking asymmetries into account

For 1500 m isometric triangular grid of water-Cherenkov detectors (Auger-like)

Impact of taking asymmetries into account

For 1500 m isometric triangular grid of water-Cherenkov detectors (Auger-like)

Negligible bias in arrival direction $\left(<0.1^{\circ}\right)$ and $S(1000)$ and change therein with correction) negligible

Summary

- Asymmetries in simulated signals with relative amplitudes of up to 25\% (40\%) for water-Cherenkov (scintillator detectors)
- Interplay between geometric and attenuative effects and signal fraction from different shower components
- Dependencies on distance to shower axis and zenith angle
- Biases of $\sim 40 \mathrm{~m}$ in core position if not taken into account
- Improvement in core resolution of up to 50% if taken into account

For details (e.g. functional forms of the asymmetry parameterizations in r, θ, and $S(1000)$), please see upcoming proceeding

Mass dependence

Parameterization

$$
S(r, \zeta)=S_{1000} f_{\mathrm{LDF}}\left[1+b\left(r, \theta, \log \left(S_{1000}\right)\right) \cos \zeta\right]
$$

$$
b\left(r, \theta, \log \left(S_{1000}\right)\right)=k\left(\theta, \log \left(S_{1000}\right)\right) \operatorname{erf}\left(\frac{r}{r_{0}\left(\theta, \log \left(S_{1000}\right)\right)}\right)
$$

$$
\left.k\left(\theta, \log \left(S_{1000}\right)\right)=\frac{k_{0}+k_{1} \sin ^{2} \theta}{1+\exp \left(-\frac{\sin ^{2} \theta-k_{2}\left(\operatorname { l o g } \left(S_{1000))}\right.\right.}{k_{3}\left(\log \left(S_{1000}\right)\right)}\right.}\right)
$$

$$
r_{0}\left(\theta, \log \left(S_{1000}\right)\right)=r_{1}\left(\log \left(S_{1000}\right)\right)+r_{2}\left(\log \left(S_{1000}\right)\right) \sin ^{4} \theta
$$

