

Search for ultra-high energy photons and neutrinos with the Pierre Auger Observatory

Nicolás M. González Pintos for the Pierre Auger Collaboration

Inter-University Institute of High Energies

The 27th European Cosmic Ray Symposium, July 25-29 2022, Nijmegen, The Netherlands

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 801505

Neutral particles are probes of the Universe

► Produced in cosmic-ray acceleration sites (astrophysical fluxes), during cosmic-ray propagation (cosmogenic fluxes) or in the decay of putative dark matter particles

Photons trace the local Universe while neutrinos travel through cosmological distances → complementary messengers of astrophysical phenomena

Elusive particles \rightarrow need for ground arrays with large exposures

The Pierre Auger Observatory

Surface detector (SD) - 1500 m array 1600 stations - 750 m array 61 stations

 \rightarrow measurements of secondary particles on ground

Fluorescence detector (FD) - 24 telescopes across 4 sites - 3 high-elevation telescopes (HEAT)

→ measurements of longitudinal shower development

Unprecedented exposure to photons and neutrinos above 0.1 EeV

How can we identify a photon primary?

Photon search at 0.2 EeV – 1 EeV

Photon search at 1 EeV – 10 EeV

 \blacktriangleright F_µ is a proxy of the muon content

► Estimated by matching the measured signal in SD stations to S_{pred} which is a decomposition in EM and muonic components (S_{comp}) parametrized via Universality

$$S_{\text{pred}} = \sum_{i=1}^{4} \beta^{i}(F_{\mu}) \cdot S_{\text{comp}}^{i}$$

- Bkg contamination estimated with data
- ► Data set spans 12 years \rightarrow ~1000 km² sr yr
- ► 22 candidate events but consistent with the expected bkg of 30 ± 15 events

ICRC2017 1103 ICRC2019 398

Photon search at > 10 EeV

- ► Benchmarks $t_{1/2}^{bench}$ and S_{LDF} obtained with data → method free of cosmic-ray composition assumptions
- ► Data set spans 14 years \rightarrow 40000 km² sr yr
- ► 11 candidate events, compatible with bkg expectation
- Updated results to be published soon

Nicolás Martín González Pintos

Upper limits to ultra-high energy photons

Most stringent limits above 0.1 EeV with 15 years of data

- ► Constrains mass and lifetime of dark matter particles
- Need more exposure to probe cosmogenic fluxes

► Photons generated by cosmic rays irradiating the Galaxy may be predominant below 0.1 EeV

► Note that these limits are timeaveraged. EeV photons may still be produced in transient events!

How can we identify a neutrino primary?

- ► Down-going (DG) channel: v interacting deep in the atmosphere. Sensitive to all flavors
- Earth-skimming (ES) channel: v_{τ} interacting in Earth's crust. τ lepton initiating an up-going shower close to the ground
- Background composed by muon-dominated hadronic showers (EM component absorbed in the atmosphere)

JCAP10 (2019) 022

► Discrimination relies on the different SD signal shapes between hadronic and neutrino events → Area-over-Peak

Discrimination power of the neutrino search

- Neutrino air-showers have large AoP
- Neutrino cut such that 1 bkg event expected in 50 years

 $\rightarrow\,$ sensitivity limited only by operation time. Not affected by bkg contamination

Sensitivity dominated by ES channel because of larger target matter wrt the atmosphere in DG channel

ES saturates above ~40 EeV because τ is more likely to decay at much higher altitude above the SD

Diffuse neutrino search

Best sensitivity at 1 EeV, comparable to that of IceCube

Integral limit of ~ 4.4 10⁻⁹ GeV cm⁻² s⁻¹ sr⁻¹

► Non-observation disfavors a large parameter space in z_{max} and m [sources evolving as $(1+z)^m$]

 Pure-proton models strongly disfavoured
 3-fold increase in exposure needed to probe mixed-composition models

Sensitivity to steady point sources

- ► Due to Earth's rotation, point sources transit through the field of view of each channel
- ► Longest daily transit 4-5 hours in ES channel or 7-12 hours in DG channel
- Total field of view covering δ (-85°,60°)

Sweet spots for longest transit in the ES channel

Complementary energy ranges of experiments

Auger participation in follow-up campaigns

ApJ Lett. 850:L35 2017 ApJ 902:105 2020 Fron. Astron. Space Sci. 6:24 2019

► Upper limits consistent with an offaxis short gamma-ray burst

- Blazar detected by Fermi-LAT and IceCube in Sep 2017
- ► Neutrino excess in IceCube archived data
- ► Auger would have detected 1 event at ~EeV if extrapolated neutrino spectrum were sufficiently hard

Multi-messenger studies by stacking sources

- ► Upper limit to the neutrino emission in a 1-day window by stacking 62 gravitational wave (GW) events: $E_v < 6x10^{51} \text{ erg}$
- Sensitivity improves by combining sources

- ► First follow-up photon searches in coincidence with nearby GW events above 10 EeV in 1-day window
- ► If a photon candidate event were detected, the bkg hypothesis would have been rejected at 4.65σ

Summary

- ► Unrivalled exposure to photons: most stringent flux limits across three decades in energy above 0.2 EeV
- Background-free sensitivity to diffuse EeV neutrinos
- ► Depending on declination, Auger has an excellent sensitivity to transient neutrino point-sources at EeV, specially if detected via ES channel
- Auger is a key actor in the multi-messenger astronomy at ultra-high energies thanks to its large sky coverage \rightarrow bounds in models of transient events, dark matter physics, ...

Next stop: AugerPrime

- ► Aiming at a better separation between shower components.
- ► Better constrains of ultra-high energy photon and neutrino models or even the first detection!

4 m² scintillators

+ faster electronics and extended dynamic range for the SD

30 m² buried scintillators

Radio antennas

ApJ 789 160 (2014) ApJ 837 L25 (2017)

Backup – Directional y limits

Figure 10. Celestial map of photon flux upper limits in photons $\mathrm{km}^{-2} \mathrm{yr}^{-1}$ illustrated in Galactic coordinates.

- ► Multi-variate analysis using hybrid data to select enriched samples of photon-like events
- ► No significant excess of photon-like events from any direction in the sky
- ► Upper limits compatible with either:
- extragalactic sources farther than 5 Mpc
- galactic sources but transient
- galactic sources have a small optical depth

 Auger limits to photon flux from Galactic Center constrains allowed parameter space for a HESS extrapolated flux

Nicolás Martín González Pintos

Backup – Discrimination power of DG channel

Figure 3. Distribution of the Fisher variable after the downward (DGH) inclined event selection for events with number of triggered stations between 7 and 11. Black histogram: full data set up to 31 August 2018 containing 33885 events. Blue-shaded histogram: Monte Carlo simulated ν DGH events.

Flavor	Relative contribution
ν_e	0.10
$ u_{\mu}$	0.04
$ u_{ au}$	0.86
Channel	Relative contribution
Earth-skimming ν_{τ}	0.79
Downward-going $\nu_e + \nu_\mu + \nu_\tau$	0.21

Figure 4. Distribution of the Fisher variable after the downward (DGL) inclined event selection for events with reconstructed zenith angle $64.5^{\circ} < \theta \leq 67.5^{\circ}$. Black histogram: full data set up to 31 August 2018 containing 3948 events. Green-shaded histogram: Monte Carlo simulated ν DGL events.

Table 1. Top of table: relative contribution of the three neutrino flavors to the event rate in Auger due to a neutrino flux $\phi_{\nu} \propto E_{\nu}^{-2}$. Bottom: relative contribution to the rate in the Earth-skimming (ES) and Downward-going (DG) channels.

Backup – Auger+IceCube complementary exposure

Figure 3: Left panel: Instantaneous effective areas for all the channels as a function of neutrino energy for selected zenith angles as labeled, compared to those of IceCube [11].

Backup – GW170817 in the Auger FoV

The BNS merger was in optimal position for the detection of UHE v_{τ} from Auger at the instant of emission of GW170817

Figure 4. Left: Sensitive sky areas of ANTARES, IceCube and Auger at the time of the event GW170817 in Equatorial Coordinates. The red contour marks the 90% C.L. location of the event GW170817 [1, 18].