

Radio Neutrino Observatory Greenland

Prospects for Cosmic Ray Measurements with RNO-G

Lilly Pyras for the RNO-G Collaboration ECRS, Nijmegen, 26.07.2022

DESY.

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Neutrino Events

Possible Backgrounds to Neutrino Events

Possible Background to Neutrinos

The Muon Background

Muon Background

Muon flux for different cosmic ray compositions

Predicted triggers in RNO-G

\rightarrow Muon flux remains the largest uncertainty

Problem: Same order as expected neutrino events

How to reject Backgrounds?

- Idea: muons stem from an air shower
- We can detect the air shower and veto the in-ice trigger
- Air shower tagging better at highest energies, where muons are most dangerous

Simulating and Detecting Air Showers with RNO-G

Surface Trigger

Trigger Parameters

- Threshold
- Frequency band
 - Select a sub-region of the frequencies with a bandpass filter (80-180 MHz)
 - \rightarrow Enables lower threshold
- Number of coincidences
 - \rightarrow Reduces noise trigger rate
- Coincidence window

Schottky Diode

A cheap and low power trigger

- FPGA trigger requires a low frequency signal
- Schottky diode is cheap, robust and low in power
- But precise modeling of trigger threshold requires effort
- Initial design had limited sensitivity due to the short development time

Cosmic-Ray Simulations

Optimized hardware compatible trigger settings (for a noise trigger rate < 0.5 Hz)

- Passband: 80 180 MHz
- Coincidence window: 60 ns
- Number of coincidences: 2 out of 3
- Effective area for the full array:
- 407 showers, each shower at 30 core positions Diode reponse:
- Measured diode (pessimistic)
- Modeled with hilbert envelope (idealized)

Cosmic-Ray Simulations

Results for different trigger settings

- Effective area depends on detailed trigger characteristics, like response to pulse shape, threshold, bias voltage on diode, temperature
- Flux from 10^{16.5} 10²⁰ eV is considered (Auger <u>arXiv:1909.09073</u>)

For a 35-station array

Summary

- RNO-G is designed for EeV neutrinos, but also air shower detection
- Effective area at low energies depends on trigger, the details are currently under study
- RNO-G expects air shower induced backgrounds at low energies, predictions have large uncertainties
- Goal: Use cosmic rays as calibration source for neutrino detection
- Cosmic ray search is in progress
- Trigger optimization planned to increase number of cosmic rays,
- and obtain a better calibration

