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Introduction



1.1 ENERGY SPECTRUM OF COSMIC RAYS
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HAWC’s previous result: measurement of the all-particle energy spectrum 
from 10 to 500 TeV  with 8 months of data [1].

Our main goals are:


• To extend this study up to 
1015 eV with HAWC. 


• To increase the statistics 
in the analysis. 


• To reduce PMT systematic 
u n c e r t a i n t i e s u s i n g 
improved simulations on 
the performance of the 
detector [2].

J. A. Morales - Soto, CR energy-spectrum measured with HAWC. 27th ECRS 2022, Netherlands.



The HAWC Observatory
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2.1 HAWC
• HAWC has as scientific objectives: to extend astrophysical measurements of 

gamma rays up to 100 TeV, as well as to study cosmic rays between 100 GeV and 
1 PeV.

• Located between Pico de Orizaba and 
Sierra Negra volcanoes in Puebla, 
México.


• 4100 m a.s.l.


• Area of 22000  m2  (62% physical 
coverage).


• 300 Water Cherenkov detectors.


• 1200 photomultipliers.

Image credit: HAWC collab.

Image credit: INEGI

HAWC

J. A. Morales - Soto, CR energy-spectrum measured with HAWC. 27th ECRS 2022, Netherlands.
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2.2 SIMULATIONS

• 1.3 x107 showers were simulated with Corsika (v7.4) [3].


• Hadronic interaction models: FLUKA [4] (E < 80 GeV) and  QGSJet-II-04 [5] (E    80 GeV).


• The interactions between secondary particles and HAWC’s detectors were simulated with GEANT4 [6].


• Simulated nuclei: H, He, C, O, Ne, Mg, Si, Fe. Spectra were weighted according to fits to  AMS-2 
[7,8], CREAM I - II [9,10], and PAMELA [11] data. Details of the nominal composition model are 
given in [1].


• E = 5 GeV - 3 PeV.


• Shower cores are distributed over a circular area with 1000 m of radius centered at HAWC, with 
zenith angles < 70o.

≥

J. A. Morales - Soto, CR energy-spectrum measured with HAWC. 27th ECRS 2022, Netherlands.
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2.3 DATA SELECTION
Quality cuts were applied to HAWC’s simulated and measured data to diminish the 
systematic effects in energy resolution, core position and arrival direction.


Selected events:

J. A. Morales - Soto, CR energy-spectrum measured with HAWC.

• Succefully reconstructed,


• zenith angle θ < 35º,


• activated at least 60 channels in a 
radius of 40 m from the shower core,


• shower cores were reconstructed  
mainly inside HAWC’s area,


• and activated more than 30% of the 
1200 available channels.

Resolution in core position, arrival direction and primary 
energy at E=105.9 GeV:

Δψ = 0.7∘ΔR = 19.5m ΔE/E = 26 %
27th ECRS 2022, Netherlands.



Analysis and results



Preliminary
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3.1 HAWC’S MEASURED DATA
 Data from January 1st, 2018 to December 31st, 2019 were selected for this work.


Only air showers within E = 103.8 - 106.2 GeV were employed.

Total effective 
time

1062 days

N(ER):  Measured energy distribution after 
quality cuts

J. A. Morales - Soto, CR energy-spectrum measured with HAWC.

ΔΩ = 1.1363 sr

27th ECRS 2022, Netherlands.
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3.2 ENERGY SPECTRUM ESTIMATION
From N(ER) we get the unfolded energy distribution N(E)

2) P(Ei |ER
j ) =

P(ER
j |Ei)P0(Ei)

∑nc
l P(ER

j |El)P0(El)
.

3) N(Ei) =
nE

∑
j=1

P(Ei |ER
j )N(ER

j ) =
nE

∑
j=1

MijN(ER
j ) .

4) P(Ei) ≡
N(Ei)

∑nc
i=1 N(Ei)

=
N(Ei)
Ntrue

.

How? Iterative procedure, Bayesian Unfolding [12-14]

True event distribution

Response Matrix

Final probability

1) P(ER
j |Ei)

Bayes formula

(The minimum is employed as a stopping 
criterium for the iteration depth)

5)WMSE =
1
nc

nc

∑
i=1

σ̄2
stat,i + δ̄2

bias,i

N(Ei)

(calculated from MC data)

Weighted mean squared error

J. A. Morales - Soto, CR energy-spectrum measured with HAWC. 27th ECRS 2022, Netherlands.
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3.2 ENERGY SPECTRUM ESTIMATION
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Inputs from MC data
Effective AreaResponse Matrix

HAWC’s response becomes linear for

E > 104 GeV

Aeff(E) = Athrown ⋅ ϵ(E)

Preliminaryr

J. A. Morales - Soto, CR energy-spectrum measured with HAWC. 27th ECRS 2022, Netherlands.

Maximum trigger and reconstruction efficiency for

E > 104.5 GeV



δEsyst = ± 9 %

Preliminary

3.2 ENERGY SPECTRUM ESTIMATION
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Contributions to the systematic error band: 

1. PMT charge,

2. PMT efficiency,

3. PMT late light, 

4. PMT threshold, 

5. composition model (Poligonato[15], the GSF 

[16], and two models derived from fits to 
ATIC-2 [17] and JACEE [18] data),


6. effective area,

7. seed and smoothing in unfolding, 

8. unfolding technique (Gold’s technique [19], and 

also checked with the reduced cross-entropy 
method [20]),


9. differences between runs.

All-particle cosmic ray energy 
spectrum measured with HAWC

Φ(E) =
N(E)

ΔE Δt ΔΩ Aeff

J. A. Morales - Soto, CR energy-spectrum measured with HAWC. 27th ECRS 2022, Netherlands.



3.2 ENERGY SPECTRUM ESTIMATION
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Contributions to the systematic error on the flux at E = 105 GeV
PMT charge +0% / -0.07%

PMT efficiency +5.2% / -0.9%

PMT late light +3.9% / -1.3%

PMT threshold +0.36% / -0.36%

Composition model +6% / -0.07%

Effective area +1% / -1%

Seed in the unfolding +0% / -0.2%

Smoothing in the unfolding +2.7% / -0%

Unfolding technique +0% / -0.07%

Differences between runs +2.5% / -2.5%

TOTAL SYSTEMATIC UNCERTAINTY +9.8% / -3.7%

27th ECRS 2022, Netherlands.



3.3 UNCERTAINTIES ON THE FLUX
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Statistical relative error @ 105 GeV:

Systematic relative error @ 105 GeV:

 0.01%

 +9.8% -3.7%

This work:

HAWC 2017 [1]: << 1 %

This work:

HAWC 2017 [1]:  +26.4% -24.7%

±

J. A. Morales - Soto, CR energy-spectrum measured with HAWC.

Preliminary

27th ECRS 2022, Netherlands.
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δEsyst = ± 9 %

3.4 ALL-PARTICLE COSMIC RAY ENERGY SPECTRUM
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The all-particle cosmic ray energy spectrum obtained in this work compared with the results from 
direct and indirect cosmic ray experiments [21-29].

J. A. Morales - Soto, CR energy-spectrum measured with HAWC. 27th ECRS 2022, Netherlands.



By generating toy MC spectra with correlated data 
points using our covariance matrix and the result of 
the fit with the power-law model [30], it was found:

3.5 FIT OF THE SPECTRUM
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ϵ = 9.9 ± 1.8

Φ0 = 104.47±0.01 m−2 s−1 sr−1 GeV−1; γ1 = − 2.65 ± 0.001

χ2
0 = 418.84, NDOF = 8.

TS = − Δχ2 = − (χ2
1 − χ2

0)

TSobs = 418.67

E0 = 31.02+1.92
−1.81

χ2
1 = 0.17, NDOF = 5.

TeV

Φ(E) = Φ0Eγ1

p < 4 x 10-5

3.9σ
J. A. Morales - Soto, CR energy-spectrum measured with HAWC.

Significance:

Φ0 = 103.80±0.04 m−2 s−1 sr−1 GeV−1

γ1 = − 2.50 ± 0.01

γ2 = − 2.70 ± 0.004Φ(E) = Φ0Eγ1 1 + ( E
E0 )

ϵ (γ2−γ1)/ϵ Broken-Power Law

Power Law

Preliminary

27th ECRS 2022, Netherlands.
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• We have extended the measurements of the total energy spectrum of cosmic rays with HAWC up to 
1 PeV using a data set with high-statistics. 


• When comparing the systematic uncertainties between this result and that from HAWC in 2017 [1], 
the systematic uncertainty on the flux was reduced.


• We confirm the observation of a knee-like structure in the total spectrum of cosmic rays. In this 
study the position of the break is located at around 31 TeV. 


• In addition to the measurements of NUCLEON [19], HAWC's result on the all-particle energy 
spectrum offers a bridge between direct and indirect measurements of the cosmic ray spectrum.

Proyecto Conacyt A1-S-46288 and Coordinación de la Investigación Científica de la UMSNH.

J. A. Morales - Soto, CR energy-spectrum measured with HAWC. 27th ECRS 2022, Netherlands.
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ANGLE AND CORE BIAS AND RESOLUTION

J. A. Morales - Soto, CR energy-spectrum measured with HAWC. ISVHECRI 2022, India.

Resolution and bias in core positionResolution and bias in arrival direction



3.3 UNCERTAINTIES ON THE FLUX
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Preliminary Preliminary



3.3 UNCERTAINTIES ON THE PRIMARY ENERGY
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