

The all-particle energy spectrum of cosmic rays from 10 TeV to 1 PeV measured with HAWC

- Jorge Antonio Morales Soto*, Juan Carlos Arteaga Velázquez for the HAWC collaboration. Instituto de Física y Matemáticas - Universidad Michoacana *speaker
- The 27th European Cosmic Ray Symposium (ECRS 2022) Nijmegen, the Netherlands, July 26th, 2022.

1. Introduction.

2. The HAWC Observatory.

3. Analysis and results.

4. Conclusions.

•	•				•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	• •	• •	. •		•	•	•	•	•		•	•	•	•	•	•	•	•	•	• •		•	•	•	•	•	•		•	•	•	•			•	•	•	•	•	• •	• •	• •		•	•	•
•	•	• •	• •	•	•	•	•	• •	•	•	•	٠	٠	•	•	٠	•	•	•	• •	• •	• •	•	•	٠	•	•	•	• •	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	٠	٠	•	•	•	• (• •	• •	•	•	٠	

1.1 ENERGY SPECTRUM OF COSMIC RAYS

from 10 to 500 TeV with 8 months of data [1].

J. A. Morales - Soto, CR energy-spectrum measured with HAWC.

HAWC's previous result: measurement of the all-particle energy spectrum

Our main goals are:

- To extend this study up to 10¹⁵ eV with HAWC.
- To increase the statistics in the analysis.
- To reduce PMT systematic uncertainties using improved simulations on the performance of the detector [2].

2.1 HAWC

- HAWC has as scientific objectives: to extend astrophysical measurements of gamma rays up to 100 TeV, as well as to study cosmic rays between 100 GeV and 1 PeV.
- Located between Pico de Orizaba and Sierra Negra volcanoes in Puebla, México.
- 4100 m a.s.l.
- Area of 22000 m² (62% physical) coverage).
- 300 Water Cherenkov detectors.
- 1200 photomultipliers.

J. A. Morales - Soto, CR energy-spectrum measured with HAWC.

27th ECRS 2022, Netherlands.

2.2 SIMULATIONS

- 1.3 x10⁷ showers were simulated with Corsika (v7.4) [3].
- Hadronic interaction models: FLUKA [4] (E < 80 GeV) and QGSJet-II-04 [5] (E \ge 80 GeV).
- The interactions between secondary particles and HAWC's detectors were simulated with GEANT4 [6].
- Simulated nuclei: H, He, C, O, Ne, Mg, Si, Fe. Spectra were weighted according to fits to AMS-2 [7,8], CREAM I II [9,10], and PAMELA [11] data. Details of the nominal composition model are given in [1].
- E = 5 GeV 3 PeV.
- Shower cores are distributed over a circular area with 1000 m of radius centered at HAWC, with zenith angles < 70°.

2.3 DATA SELECTION

- Quality cuts were applied to HAWC's simulated and measured data to diminish the systematic effects in energy resolution, core position and arrival direction.
- Selected events:
 - Succefully reconstructed,
 - zenith angle $\theta < 35^{\circ}$,
 - activated at least 60 channels in a radius of 40 m from the shower core,
 - shower cores were reconstructed mainly inside HAWC's area,
 - and activated more than 30% of the 1200 available channels.

J. A. Morales - Soto, CR energy-spectrum measured with HAWC.

$$\Delta R = 19.5m$$
 $\Delta \psi = 0.7^{\circ}$ $\Delta E/E =$

27th ECRS 2022, Netherlands.

3.1 HAWC'S MEASURED DATA

Data from January 1st, 2018 to December 31st, 2019 were selected for this work. \bigcirc

J. A. Morales - Soto, CR energy-spectrum measured with HAWC.

Total effective time

1062 days

$\Delta \Omega = 1.1363 \text{ sr}$

3.2 ENERGY SPECTRUM ES

From N(E^R) we get the unfolded energy distribution N(E) How? Iterative procedure, **Bayesian Unfolding** [12-14]

1) $P(E_i^R | E_i)$

2)
$$P(E_{i} | E_{j}^{R}) = \frac{P(E_{j}^{R} | E_{i})P_{0}(E_{i})}{\sum_{l}^{n_{c}} P(E_{j}^{R} | E_{l})P_{0}(E_{l})}$$
.
3) $N(E_{i}) = \sum_{j=1}^{n_{E}} P(E_{i} | E_{j}^{R})N(E_{j}^{R}) = \sum_{j=1}^{n_{E}} M_{ij}N(E_{j}^{R})$.
4) $P(E_{i}) \equiv \frac{N(E_{i})}{\sum_{i=1}^{n_{c}} N(E_{i})} = \frac{N(E_{i})}{N_{true}}$
5) $WMSE = \frac{1}{n_{c}} \sum_{i=1}^{n_{c}} \frac{\bar{\sigma}_{stat,i}^{2} + \bar{\delta}_{bias,i}^{2}}{N(E_{i})}$

J. A. Morales - Soto, CR energy-spectrum measured with HAWC.

ST	'IMA	ΓΙΟΝ

Response Matrix (calculated from MC data)

Bayes formula

True event distribution

Final probability

Weighted mean squared error (The minimum is employed as a stopping criterium for the iteration depth)

3.2 ENERGY SPECTRUM ESTIMATION

Inputs from MC data

J. A. Morales - Soto, CR energy-spectrum measured with HAWC.

$$A_{eff}(E) = A_{thrown} \cdot \epsilon(E)$$

27th ECRS 2022, Netherlands.

3.2 ENERGY SPECTRUM ESTIMATION

J. A. Morales - Soto, CR energy-spectrum measured with HAWC.

Contributions to the systematic error band:

 $\Phi(E)$

N(E)

 $\Delta E \Delta t \Delta \Omega A_{eff}$

- 1. PMT charge,
- 2. PMT efficiency,
- 3. PMT late light,
- 4. PMT threshold,
- 5. composition model (Poligonato[15], the GSF [16], and two models derived from fits to ATIC-2 [17] and JACEE [18] data),
- 6. effective area,
- 7. seed and smoothing in unfolding,
- 8. unfolding technique (Gold's technique [19], and also checked with the reduced cross-entropy method [20]),
- 9. differences between runs.

3.2 ENERGY SPECTRUM ESTIMATION

Contributions to the systematic error on the flux at $E = 10^5 \text{ GeV}$

PMT charge

PMT efficiency

PMT late light

PMT threshold

Composition model

Effective area

Seed in the unfolding

Smoothing in the unfolding

Unfolding technique

Differences between runs

TOTAL SYSTEMATIC UNCERTAI

J. A. Morales - Soto, CR energy-spectrum measured with HAWC.

	+0% / -0.07%
	+5.2% / -0.9%
	+3.9% / -1.3%
	+0.36% / -0.36%
	+6% / -0.07%
	+1% / -1%
	+0% / -0.2%
	+2.7% / -0%
	+0% / -0.07%
	+2.5% / -2.5%
NTY	+9.8% / -3.7%

3.3 UNCERTAINTIES ON THE FLUX

J. A. Morales - Soto, CR energy-spectrum measured with HAWC.

Statistical relative error @ 10⁵ GeV: ±0.01% This work: HAWC 2017 [1]: << 1 %

Systematic relative error @ 10⁵ GeV: This work: +9.8% / -3.7% HAWC 2017 [1]: +26.4% / -24.7%

3.4 ALL-PARTICLE COSMIC RAY ENERGY SPECTRUM

direct and indirect cosmic ray experiments [21-29].

J. A. Morales - Soto, CR energy-spectrum measured with HAWC.

27th ECRS 2022, Netherlands.

3.5 FIT OF THE SPECTRUM

$$\Phi(E) = \Phi_0 E^{\gamma_1} \qquad \text{Po}$$

$$\Phi_0 = 10^{4.47 \pm 0.01} m^{-2} s^{-1} sr^{-1} GeV^{-1}; \qquad \gamma_1 = -2.65 \pm 0.01$$

$$\chi_0^2 = 418.84, \quad NDOF = 8.$$

$$\Phi(E) = \Phi_0 E^{\gamma_1} \left[1 + \left(\frac{E}{E_0}\right)^e \right]^{(\gamma_2 - \gamma_1)/e} \qquad \text{Broken-P}$$

$$\gamma_2 = -2.70 \pm 0.01$$

$$e = 9.9 \pm 1.8$$

$$\Phi_0 = 10^{3.80 \pm 0.04} m^{-2} s^{-1} sr^{-1} GeV^{-1} \qquad E_0 = 31.02^{+1.92}_{-1.81}$$

$$\gamma_1 = -2.50 \pm 0.01 \qquad \chi_1^2 = 0.17, \quad NDOF$$

$$TS = -\Delta \chi^2 = -(\chi_1^2 - \chi_0^2)$$

 $TS_{obs} = 418.67$

J. A. Morales - Soto, CR energy-spectrum measured with HAWC.

4 CONCLUSIONS

- We have extended the measurements of the total energy spectrum of cosmic rays with HAWC up to 1 PeV using a data set with high-statistics.
- When comparing the systematic uncertainties between this result and that from HAWC in 2017 [1], the systematic uncertainty on the flux was reduced.
- We confirm the observation of a knee-like structure in the total spectrum of cosmic rays. In this study the position of the break is located at around 31 TeV.
- In addition to the measurements of NUCLEON [19], HAWC's result on the all-particle energy spectrum offers a bridge between direct and indirect measurements of the cosmic ray spectrum.

Project supported by: Proyecto Conacyt A1-S-46288 and Coordinación de la Investigación Científica de la UMSNH.

BIBLIOGRAPHY

- [1] R. Alfaro et al., *PRD* 96 (2017) 122001.
- [2] A. Abeysekara et al. (HAWC Collaboration) The Astrophysical Journal, vol. 881, no. 2, p. 134, 2019.
- [3] D. Heck et al., Report No. FZKA 6019, Forschungszen trum Karlsruhe-Wissenhaltliche Berichte (1998).
- [4] A. Ferrari, et al., CERN-2005-10 (2005), INFN/TC 05/11, SLAC-R-773; G. Battistoni et al., AIP Conf. Proc. 896 (2007) 31.
- [5] S. Ostapchenko, Phys. Rev. D 83 (2011) 014018.
- [6] S. Agostinelli et al., NIMA 506 (2003) 250.
- [7] M. Aguilar et al. (AMS Collaboration), Phys. Rev. Lett. 114, 171103 (2015).
- [8] M. Aguilar et al. (AMS Collaboration), Phys. Rev. Lett. 115, 211101 (2015).
- [9] H. S. Ahn et al. (CREAM Collaboration), Astrophys. J. 707, 593 (2009).
- [10] Y. S. Yoon et al. (CREAM Collaboration), Astrophys. J. 728, 122 (2011).
- [11] O. Adriani et al. (PAMELA Collaboration), Science 332, 69 (2011).
- [12] D'Agostini, G. (1995). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 362(2-3), 487-498.
- [13] Richardson, W. H. (1972). *JoSA*, 62(1), 55-59.

BIBLIOGRAPHY

[14] Lucy, L. B. (1974). *The astronomical journal*, *79*, 745.

[15] R. Hörandel, Astrop. Phys. 19(2) (2003) 193.

[16] Dembinski, R. Engel, A. Fedynitch, et al. ArXiv, preprint arXiv:1711.11432, 2017.

[17] D. Panov et al., Bull. Russ. Acad. Sci. Phys. 71 (2007) 494.

[18] Takahashi et al., Nucl. Phys. B (Proc. Suppl.) 60B (1998) 83.

[19] R. Gold, An iterative unfolding method for response matrices. 1964. doi: 10.2172/4634295.

[20] M. Schmelling, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment vol. 340, no. 2, pp. 400–412, 1994.

[21] A. D. Panov, et al., Bulletin of the Russian Academy of Sciences: Physics 73.5 (2009): 564-567.

[22] R. Koirala, T. K. Gaisser, et al., POS (ICRC2019) 318.

[23] W. D. Apel, et al., Astroparticle Physics, 47 (2013), 54-66.

[24] Tea Antoni, et al., Astroparticle Physics 24 (2005) 1–25.

BIBLIOGRAPHY

[25] V. Grebenyuk, et al., Advances in Space Research 64.12 (2019): 2546-2558.

[26] Prosin, V. V., Berezhnev, et al., (2014). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 756, 94-101.

[27] Montini, P., & Mari, S. M. (2016). arXiv preprint arXiv:1608.01389.

[28] Amenomori, M., Bi, X. J., Chen, D., Cui, S. W., Ding, L. K., Ding, X. H., ... & Tibet ASγ Collaboration. (2008). The Astrophysical Journal, 678(2), 1165.

[29] Prosin, V. V., Astapov, I. I., Bezyazeekov, P. A., Boreyko, V., Borodin, A. N., Brueckner, M., ... & Yashin, I. I. (2019). Energy Spectrum of Primary Cosmic Rays, According to TUNKA-133 and TAIGA-HiSCORE EAS Cherenkov Light Data. Bulletin of the Russian Academy of Sciences: Physics, 83(8), 1016-1019.

[30] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update

ANGLE AND CORE BIAS AND RESOLUTION

Resolution and bias in arrival direction

Resolution and bias in core position

J. A. Morales - Soto, CR energy-spectrum measured with HAWC.

3.3 UNCERTAINTIES ON THE FLUX

J. A. Morales - Soto, CR energy-spectrum measured with HAWC.

3.3 UNCERTAINTIES ON THE PRIMARY ENERGY

J. A. Morales - Soto, CR energy-spectrum measured with HAWC.

ISVHECRI 2022, India.