Cosmic-Ray Composition Analysis at IceCube Observatory, using Graph Neural Networks

Paras Koundal

For the IceCube Collaboration

0

-

paraskoundal.com Karlsruhe Institute of Technology, Germany

ท 🥣 /ParasKoundal

----- 2 2

Previous Work

Ln(NN Mass output)

Using Full Signal Footprint

Motivations:

- o Benefit from low-level signal information.
 - o LDF IceTop and In-Ice
 - o Capture H.E. Muon Deposits in-ice
 - o For Muon # Estimation See Stef Verpoest's Work (Jul 28 Parallel 1)
- o Reduce dependence on prior reconstructions
- o Faster Inference on real data

Using In-Ice Signal Footprint Current Implementation at IceCube

Credits: M. Huennefeld (arXiv:2101.11589)

Flattened Layer

3 Fully Connected Layers

Energy

Azimuth

Zenith

Gradient Stop

 $\Box \sigma_{Azimuth}$ $\Box \sigma_{Zenith}$

Dir.-x

Dir.-y

Dir.-z

20 Hex. Convolutional Layers

8 Convolutional Layers

14 Convolutional Layers

Ψ¥.

10 x 10 x 60 x 9

(8 × 10 × 5

I contract a study connected Layers Maxima Array frame CNINIa Credits: IceCube-Gen2(arXiv:2008.04323)

Moving Away from CNNs

Paras Koundal - ECRS, 2022

Section 1: Mass prediction Using GNNs

0

-

1 6

Learning on Graphs

Repeated for Every Event

Paras Koundal - ECRS, 2022

Feature Info

Graph Features

- o <u>Per Node Level</u>
 - o Coordinates
 - o Charge Deposits
 - o Hit-Time

• Edge Level (For Each Node)

- o k-Nearest Neighbor (Graph-size dependent; Small
 - Graph \rightarrow Fewer Connections and vice versa)
- o Weighted by Spatial Separation

Pre-engineered Features

- Primarily Energy Dependent:
 - o Shower Size S₁₂₅ (Energy Proxy) [<u>Phys. Rev. D 100, 082002 (2019)</u>]

• Primarily Composition Dependent:

- o dE/dX_{1500} = Fit value at 1500m of in-ice energy loss profile [<u>Phys. Rev. D 100, 082002 (2019)</u>]
- o Total Stochastic Energy = Energy Deposit by high local stochastic deposits [PoS(ICRC2021)323]
- \circ Impact Weighted Charge New
- Ratio Parameter = Proxy for Muonic to EM Fraction New

o <u>Others:</u>

- o Direction: Reconstructed Zenith and Azimuth
- o Slant Length of track in ice
- o Number of Hit DOMs

GNN Architecture

Unique Target Prediction:

space(arXiv:1801.07829)

- Perform Regression with Classification by calculating expectation 0
- Allows us to tell element wise probabilities along with continuous ln(A) values 0

Concat

Results

Mean Bias Reduction For All Primaries in almost all energy bins

Section 2: Pre-engineered Features

0

-

Pre-engineered Features

1. Impact Weighted Charge

- Motivation: At same energy, expect Wider Muon Bundles for Fe than H
- Reasons:
 - o Fe-shower interact earlier in the atmosphere
 - Larger Muon Multiplicity → Lower energy muons
 with larger transversal momenta and are situated
 further from the shower axis
- o Bin it to observe shower development at different stages
 - o Five correlated composition-sensitive parameters
- o Definitions:
 - o Impact = Perpendicular distance of each DOM from the track
 - o Charge = Charge Deposit at each DOM
 - o Percentiles : By number of DOM hits

Impact Weighted Charge

Karlsruher Institut für Tech

 $\frac{\sum Charge_i * ri}{\sum r_i}$

- $_{\odot}$ Good Separation Between Primaries
- o Help understand shower attenuation in-ice and a dynamic parameter
- Possibly help in understanding photon propagation in-ice
 Ongoing work

Pre-engineered Features

- 2. Ratio Parameter
 - o Motivation: Ratio of Muon to Electron # is a composition sensitive parameter

 $_{\odot}$ Very Good Separation Between Primaries

Shows potential benefits of muon & electron number estimate for composition analysis [Related - <u>Stef Verpoest's Work</u> <u>(Jul 28 – Parallel 1)].</u>

Outlook

- Further improvement by finetuning
- Analysis of Point Probability estimates for each shower
- Comparison with different hadronic interaction models
- Accuracy change by accounting detector effects:
 - Snow-Height changes, DOM Efficiency, scattering and absorption
- Comparisons with Data
 - Individual mass-spectra over the full energy range
 - Mean Mass Spectra
- Energy Spectrum Estimation

Questions

Results

Improvement – Extends beyond

Paras Koundal - ECRS, 2022

18

Darker – RF Based ; Lighter – Graph Based

Darker – RF Based ; Lighter – Graph Based

Other Details

Loss = Classification Loss + Regression Loss + Embedding Loss (at Concat Layer)

— Hinge Loss

Incorporates loss for distance from the classification boundary into the cost calculation

Smooth L1 Loss

Includes transition between MSE and Absolute Error; less sensitive to outliers Triplet Margin Loss (with Cosine Distance) M Measure a relative similarity between samples

Map H-H closer and H-Fe farther; Reduce Dependence on last layer (during backpropagation)

Adam Optimizer; Step on Plateau LR scheduler

Learning on Graphs

Defined by set of nodes (V) and set of edges (E) between the nodes

Neighborhood and Connectivity & permutational invariance of Node Labelling _

Undirected : Facebook Friends ... ; Directed : Citation Graph ... ; Bidirectional : Twitter Follows

