Practical and Accurate Calculations of Radio Emission from Extensive Air Showers

Andrew Ludwig ¹ Andres Romero-Wolf ^{1,*} Washington Carvalho Jr. ²

¹Jet Propulsion Laboratory, California Institute of Technology

²IMAPP, Radboud University, Nijmegen, the Netherlands

*Andrew.Romero-Wolf@jpl.nasa.gov

ECRS 2022 - Nijmegen - the Netherlands

July 28, 2022

Today: e.g. ZHAireS in the time domain

 $\vec{A}(t,\hat{u}) = \frac{\mu e}{4\pi Rc} \vec{\beta}_{\perp} \frac{\Theta(t-t_1^{det}) - \Theta(t-t_2^{det})}{1-n\vec{\beta}_{\perp}\hat{u}}$

R

 Contribution to A calculated separately for EVERY SINGLE TRACK!

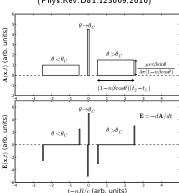
t1,E1,X1

V

(const)

û (const)

t2. E2. X2



(Phys.Rev.D81:123009,2010)

 $t_{1,2}^{det}$ depend on $n_{eff} = \frac{1}{R} \int_0^R n(h) \, dl$ which is **VERY EXPENSIVE**!

Basic idea: Divide the shower in 4-D volumes

- Shower is divided into 4-D volumes of spatial sides L and time length L/c
- Volumes must obey Fraunhoffer condition for all observers:

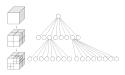
$$L < rac{1}{\sin heta} \sqrt{rac{\lambda R}{2\pi}} \quad (heta = 60^\circ)$$

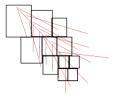
- Cell is sufficiently small so that many terms of the \vec{A} contribution are constant for the whole cell (depends on receiver time resolution)
- Contribution of all the tracks inside the cell is calculated only once, based on an average track for the cell
- Almost amounts to a macroscopic treatment of the shower, but retaining the microscopic precision

Spacetime cell where all tracks have the same delay and effective index of refraction compared to receiver time resolution.

Receiver

Cells have different sizes: Octree binning

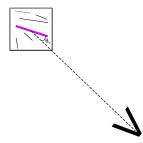




- Cell size optimization: Octree binning
- $\bullet\,$ Start with spatial cells set to a large side length L
- Checks the Fraunhofer condition for that side L
- If side length does not meet the condition, L is divided by 2
 - We now have 8 cubes instead of the original
 - Far away from the observers, L is large
 - Close to the observers, L is small
- Calculate n_{eff} once per cell and store it
- Each cube is uniquely defined by its center point

Effective average track and \vec{A} calculation

All tracks inside a volume are represented by a single "effective" track



• For a cell *i* and track *j*: (different notation but equivalent to the ZHS single track formula)

$$\vec{A}_{i}\left(\vec{x},t\right) = \frac{\mu_{0}(Q\vec{v})_{i \in \mathrm{ff} \perp}}{4\pi R_{i}} \left| \frac{dt'_{i \in \mathrm{ff}}}{dt} \right|_{t'=t'_{ret}} \Pi\left(t',t'_{1 \in \mathrm{ff}},t'_{2 \in \mathrm{ff}}\right),$$

where Π is a boxcar function,

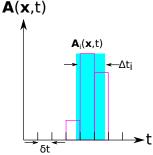
t' is source time, \vec{x} and t are observer position and time,

$$(dt')_{i_{\mathrm{eff}}} = |t'_{2_{\mathrm{eff}}} - t'_{1_{\mathrm{eff}}}| = \left|\frac{\sum_{j} w_{ij} a_{ij} v_{ij} dt'_{ij}}{\sum_{j} w_{ij} a_{ij} v_{ij}}\right|$$
 and
 $(Q\vec{v})_{i_{\mathrm{eff}}} = \frac{\sum_{j} w_{ij} a_{ij} \vec{v}_{ij} dt'_{ij}}{\sum_{j} dt'_{ij}}$

 Average track inside cell *i* is completely defined by (*dt'*)_{*i*eff} and (*Qv*)_{*i*eff}

Time binning the Radiation at the Observer

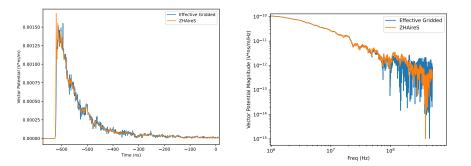
- Add the contribution of all cells to a resulting \vec{A} at the observer
- Similar to ZHAIRES
- Boxcar function $\Pi\left(t',t_{1\mathrm{eff}}',t_{2\mathrm{eff}}'
 ight)$ gives rise to time window Δt_i
- δt is a fixed time bin width set by the receiver
- Bins that fully overlap with Δt_i filled with the full value of $\vec{A}_i(\vec{x},t)$
- Contribution of partially overlapping bins scaled by the fraction of bin overlap



Ludwig, Romero-Wolf, Carvalho Jr.

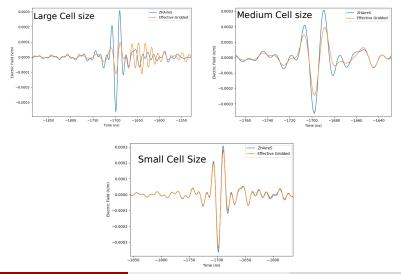
Comparison with full ZHAIRES simulations

- Input: particle tracks obtained from ZHAIRES
- Calculations using the ZHS algorithm compared to this work
- Thinning of 10^{-3} and $\theta = 70^{\circ}$



Importance of correct cell sizing

• Bandpass filtered pulse 30-80 MHz, thinning 10^{-3} and $heta=70^\circ$

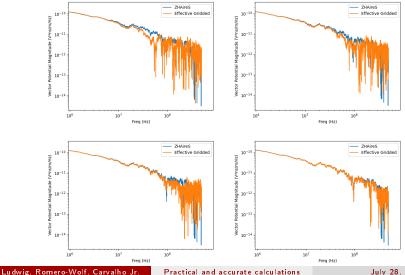


Ludwig, Romero-Wolf, Carvalho Jr.

Practical and accurate calculations

Importance of correct cell sizing

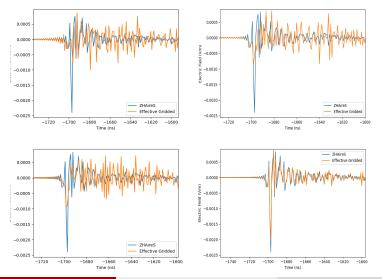
• Spectra, thinning 10^{-3} and $heta=70^\circ$



July 28, 2022 9 / 14

Importance of correct cell sizing

• Full bandwidth pulse, thinning 10^{-3} and $\theta = 70^{\circ}$ (cell size depends on λ)



Ludwig, Romero-Wolf, Carvalho Jr.

Practical and accurate calculations

Advantages

- Only a single calculation per 4-D volume
- Theoretically much faster than track-by-track calculations
- Almost a macroscopic approach, but retaining the precision of the successful microscopic formalism.
 - Maybe parametrizations of average tracks could be devised
- Can substitute "star shape" interpolations
 - Distance R to closest antenna \rightarrow distance R to ground: Fraunhoffer condition satisfied for all possible antennas
 - All shower information can be saved and later used to quickly calculate the \vec{E} trace at any position.

• More detailed calculations that are too expensive on a track-by-track basis can be performed

- These can be calculated in advance for each cell
- Atmospheric effects: e.g. curved propagation
 - Important effect specially for upgoing horizontal showers
 - Very relevant for satellite and balloon experiments
- Antenna patterns could also be taken into account in the simulation

Questions?

Other applications of Radio...

BACKUP

Ludwig, Romero-Wolf, Carvalho Jr. Practical and accurate calculations

Math

$$\begin{split} \vec{A}_i\left(\vec{x},t\right) &= \frac{\mu_0}{4\pi} \iiint_V d^3 \vec{x} \sum_i \frac{\vec{J}_{i\perp}\left(\vec{x}_i',t_i'\right)}{|\vec{x}-\vec{x}_i'|} \left| \frac{dt'}{dt} \right|_{t'=t_i'} \text{ In the case of a single track, we can use:} \\ \vec{J}\left(\vec{x}',t'\right) &= \rho\left(\vec{x}',t'\right) \vec{v}, \text{ where } \rho\left(\vec{x}',t'\right) &= q\delta\left(\vec{x}'-\vec{v}t'\right) \Pi\left(t',t_1',t_2'\right) \end{split}$$

The δ function models the track as an infinitely thin linear charge density with particle velocity \vec{v} . We then obtain:

$$\vec{A}(\vec{x},t) = \frac{\mu_{0q}}{4\pi R} \vec{v}_{\perp} \left| \frac{dt'}{dt} \right|_{t'=t'_{ret}} \Pi(t',t'_{1},t'_{2})$$

If, instead of a single track, we have a charged current density vector \vec{J}_i at a location \vec{x}_i that is approximately constant over a volume ΔV_i :

$$\vec{A}_{i}(\vec{x},t) = \frac{\mu_{0}}{4\pi} \Delta V_{i} \frac{\vec{J}_{i\perp}(\vec{x}_{i}',t_{ret}')}{|\vec{x}-\vec{x}_{i}'|} \left| \frac{dt'}{dt} \right|_{t'=t_{ret}'}$$

In this case, our \vec{J}_{\perp} is no longer a single track, but a collection of tracks within a cell. $\Delta V_i \vec{J}_{i\perp} = Q_i \vec{v}_{i\perp}$, where Q_i is charge within the cell:

$$\vec{A}_{i}\left(\vec{x},t\right) = \frac{\mu_{0}}{4\pi} \frac{Q_{i}\vec{v}_{i\perp}\left(\vec{x}_{i}',t_{ret}'\right)}{|\vec{x}-\vec{x}_{i}'|} \left|\frac{dt'}{dt}\right|_{t'=t_{ret}'}$$