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Today: e.g. ZHAIreS in the time domain

@ Contribution to A calculated separately for . (Phys.Rev.D81:123009,2010)
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Basic idea: Divide the shower in 4-D volumes

@ Shower is divided into 4-D volumes of spatial
sides L and time length L/c

@ Volumes must obey Fraunhoffer condition for
all observers:

L< g\ 2r (0=60)
o Cell is sufficiently small so that many terms of

the A contribution are constant for the whole
cell (depends on receiver time resolution)

o Contribution of all the tracks inside the cell is
calculated only once, based on an average
track for the cell

Spacetime cell where
all racks have the
same delay and
effective index of
refraction compared
to receiver time
resolution.

@ Almost amounts to a macroscopic treatment
of the shower, but retaining the microscopic
precision

Receiver
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Cells have different sizes: Octree binning

e

Cell size optimization: Octree binning
Start with spatial cells set to a large side length L

Checks the Fraunhofer condition for that side L

If side length does not meet the condition, L is
divided by 2
e We now have 8 cubes instead of the original
o Far away from the observers, L is large
o Close to the observers, L is small

o Calculate neg once per cell and store it

@ Each cube is uniquely defined by its center point
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Effective average track and A calculation

@ For a cell i and track j:

All tracks inside a volume (different notation but equivalent to the ZHS single track formula)

are represented by a single - 10(QP)jegr L | dtheg I /
“effective” track Ai (%, 1) = 4rR; dt |y M(t, e, toess).
" ret

where I1 is a boxcar function,
t’ is source time, X and t are observer position and time,

> w,--q;-v,--dt'f.
i (dt")ier = [trer — tien| = ey | and
\\\ R _ > w,-jq,-jV,-jdt'-/-
(QP)iesr = =522 dir
@ Average track inside cell i is completely
defined by (dt')jer and (QV)jesr
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-
Time binning the Radiation at the Observer

o Add the contribution of all cells to a resulting A at the observer
@ Similar to ZHAIRES
e Boxcar function IM(#', t{ 4, th.q) gives rise to time window At;
@ It is a fixed time bin width set by the receiver
e Bins that fully overlap with At; filled with the full value of A; (%, t)
@ Contribution of partially overlapping bins scaled by the fraction of bin
overlap
A(x,t)
A
Ai(x,t)
— ~Atj
= >t
6t
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Comparison with full ZHARzeS simulations

@ Input: particle tracks obtained from ZHAIRES

e Calculations using the ZHS algorithm compared to this work

e Thinning of 1073 and § = 70°
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Importance of correct cell sizing
e Bandpass filtered pulse 30-80 MHz, thinning 1073 and 6 = 70°
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Importance of correct cell sizing

@ Spectra, thinning 1073 and 6 = 70°
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Importance of correct cell sizing
o Full bandwidth pulse, thinning 1073 and # = 70° (cell size depends on \)
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-
Advantages

Only a single calculation per 4-D volume

Theoretically much faster than track-by-track calculations
Almost a macroscopic approach, but retaining the precision of the
successful microscopic formalism.
e Maybe parametrizations of average tracks could be devised
@ Can substitute “star shape” interpolations
o Distance R to closest antenna — distance R to ground: Fraunhoffer
condition satisfied for all possible antennas
o All shower information can be saved and later used to quickly calculate
the E trace at any position.
@ More detailed calculations that are too expensive on a track-by-track
basis can be performed

e These can be calculated in advance for each cell

o Atmospheric effects: e.g. curved propagation
o Important effect specially for upgoing horizontal showers
o Very relevant for satellite and balloon experiments

e Antenna patterns could also be taken into account in the simulation
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Questions?

Other applications of Radio...
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BACKUP
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N
Math

dt’

o , In the case of a single track, we can use:
t' =

A ivd §:7t:
Ai (3, 1) = 12 [ff, @ 53, ZChr)
J(E,t)=p(R,t')V, where p(X',t') = q6 (X' — vt')T1(¢, ], t)

The § function models the track as an infinitely thin linear charge density with particle
velocity V. We then obtain:

AR 1) = oy, |4

dt

L, Nt u, )

~ “ret

If, instead of a single track, we have a charged current density vector J: at a location %
that is approximately constant over a volume AV;:

Ai (%,1) = #°Av7'4x';‘,'f') de

t'=t;,

In this case, our J. is no longer a single track, but a collection of tracks within a cell.
AViJi1 = Qivi1, where Q; is charge within the cell:

A iv4 Q 1 i’ rel
Ai (%, ) = o @ (5 )

P |x

dt’

dt

——
t 7tref
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