

Based on ArXiv: 2205.08544

Anisotropic diffusion cannot explain TeV halo observations

Pedro de la Torre Luque OKC, Stockholm University

pedro.delatorreluque@fysik.su.se

Unexpected emission at high energies around PWNe :

- PWN ~ 0.1 pc few pc
- TeV halo Geminga 25 pc (2°)

Gamma-ray spectrum well compatible with IC emission

Emission profile ~1/r (**diffusive profile**) Nevertheless, much less extended than expected assuming the typical **Diff. Coeff**. (**100 times smaller**)

A few TeV halos have been found - all of them seem to be symmetric and explained by a similar Diff. Coeff.

Unexpected emission at high energies around PWNe :

- PWN ~ 0.1 pc few pc
- TeV halo Geminga 25 pc (2°)

Gamma-ray spectrum well compatible with IC emission

Emission profile ~1/r (**diffusive profile**) Nevertheless, much less extended than expected assuming the typical **Diff. Coeff**. (**100 times smaller**)

A few TeV halos have been found - all of them seem to be symmetric and explained by a similar Diff. Coeff.

Different theories try to explain the origin of these halos

- Ballistic propagation (Recchia et al. PRD 104, 123017, 2021)
- O Self-generation of turbulence (Evoli et al. PRD 98, 063017, 2018)
- Anisotropic diffusion (Ruo-Yu Liu et al. PRL 123, 221103, 2019)

Abysekara et al. 2017

Different theories try to explain the origin of these halos

- Ballistic propagation (Recchia et al. PRD 104, 123017, 2021)
- O Self-generation of turbulence (Evoli et al. PRD 98, 063017, 2018)
- Anisotropic diffusion (Ruo-Yu Liu et al. PRL 123, 221103, 2019)

If turbulence is inhibited in the direction perpendicular to the magnetic field around the PWN and the magnetic field direction is aligned with our line of sight we can reproduce Geminga observations!

Different theories try to explain the origin of these halos

- Ballistic propagation (Recchia et al. PRD 104, 123017, 2021)
- O Self-generation of turbulence (Evoli et al. PRD 98, 063017, 2018)
- Anisotropic diffusion (Ruo-Yu Liu et al. PRL 123, 221103, 2019)

If turbulence is inhibited in the direction perpendicular to the magnetic field around the PWN and the magnetic field direction is aligned with our line of sight we can reproduce Geminga observations!

A few TeV halos have been found - all of them seem to be nearly symmetric

Abysekara et al. 2017

$$\begin{aligned} \frac{\partial u}{\partial t}(r,z,t,E_e) &= \frac{1}{r}\frac{\partial}{\partial r}\left(rD_r\frac{\partial u}{\partial r}(r,z,t,E_e)\right) + \frac{\partial}{\partial z}\left(D_z\frac{\partial u}{\partial z}(r,z,t,E_e)\right) + \\ &+ \mathcal{S}(r,z,t,E_e) + \frac{\partial}{\partial E_e}\left(\frac{\partial E_e}{\partial t}u(r,z,t,E_e)\right) \end{aligned}$$

In the vicinity of the source, the **magnetic field** resembles a dipole, so that the magnetic lines follow the direction of the poles (**z axis**).

Propagation of particles along the lines (parallel to the **B** direction) is faster than in the **perpendicular direction** (**r axis**), creating a cylindrically symmetric diffusion around the PWN (around the z axis)

Yan et al. ApJ, 673:942-953, 2008

$$\boldsymbol{D}_r = X \boldsymbol{D}_z$$
 ; $X = M_A^4$

 $M_A \rightarrow Alfvenic$ Mach number $M_A \sim \frac{\delta B}{B_0}\Big|_{L_{IIII}}$

$$\begin{split} \frac{\partial u}{\partial t}(r,z,t,E_e) &= \frac{1}{r}\frac{\partial}{\partial r}\left(rD_r\frac{\partial u}{\partial r}(r,z,t,E_e)\right) + \frac{\partial}{\partial z}\left(D_z\frac{\partial u}{\partial z}(r,z,t,E_e)\right) + \\ &+ \mathcal{S}(r,z,t,E_e) + \frac{\partial}{\partial E_e}\left(\frac{\partial E_e}{\partial t}u(r,z,t,E_e)\right) \end{split}$$

We define the inclination angle, ψ_{Incl} , as the angle between the magnetic field axis and the line of sight of the observer.

In the vicinity of the source, the **magnetic field** resembles a dipole, so that the magnetic lines follow the direction of the poles (**z axis**).

Propagation of particles along the lines (parallel to the **B** direction) is faster than in the **perpendicular direction** (**r axis**), creating a cylindrically symmetric diffusion around the PWN (around the z axis)

Yan et al. ApJ, 673:942-953, 2008

$$\boldsymbol{D}_r = X \boldsymbol{D}_z$$
 ; $X = M_A^4$

$$M_A \rightarrow Alfvenic$$

Mach number
 $M_A \sim \frac{\delta B}{B_0}\Big|_{L_{Inj}}$

$$\begin{split} \frac{\partial u}{\partial t}(r,z,t,E_e) &= \frac{1}{r}\frac{\partial}{\partial r}\left(rD_r\frac{\partial u}{\partial r}(r,z,t,E_e)\right) + \frac{\partial}{\partial z}\left(D_z\frac{\partial u}{\partial z}(r,z,t,E_e)\right) + \\ &+ \mathcal{S}(r,z,t,E_e) + \frac{\partial}{\partial E_e}\left(\frac{\partial E_e}{\partial t}u(r,z,t,E_e)\right) \end{split}$$

We define the inclination angle, ψ_{Incl} , as the angle between the magnetic field axis and the line of sight of the observer. In the vicinity of the source, the **magnetic field** resembles a dipole, so that the magnetic lines follow the direction of the poles (**z axis**).

Propagation of particles along the lines (parallel to the **B** direction) is faster than in the **perpendicular direction** (**r axis**), creating a cylindrically symmetric diffusion around the PWN (around the z axis)

Yan et al. ApJ, 673:942-953, 2008

$$\boldsymbol{D}_r = X \boldsymbol{D}_z \quad ; \quad X = M_A^4$$

 $M_A \rightarrow Alfvenic$ Mach number $M_A \sim \frac{\delta B}{B_0}$

Can it explain TeV halos for normal values of the diffusion coefficient?

$$\begin{split} \frac{\partial u}{\partial t}(r,z,t,E_e) &= \frac{1}{r} \frac{\partial}{\partial r} \left(r D_r \frac{\partial u}{\partial r}(r,z,t,E_e) \right) + \frac{\partial}{\partial z} \left(D_z \frac{\partial u}{\partial z}(r,z,t,E_e) \right) + \\ &+ \mathcal{S}(r,z,t,E_e) + \frac{\partial}{\partial E_e} \left(\frac{\partial E_e}{\partial t} u(r,z,t,E_e) \right) \end{split}$$

Leptons are injected with a source term following: $S(r, z, t, E_e) = S_0(1 + t/\tau_0)^{-\frac{n+1}{n-1}} (E_e/\text{GeV})^{-\alpha} e^{-E_e/E_{\text{cut}}} \delta(r, z)$ Normalized by imposing $W_e = 1.1 \times 10^{49} \ erg$. We assume $D_{\parallel} = D_Z = D_0 (E/E_0)^{\delta}$, with $E_0 = 1$ GeV, $D_0 = 3.8 \times 10^{28} \text{ cm}^2/\text{s}$ and $\delta = 0.33$

(Kolmogorov spectrum).

These leptons generate γ -rays via IC emission, which follow the same spatial distribution as the lepton distribution (*Rate of energy loss:* $\frac{\partial E_e}{\partial t} \propto E_e^2$)

$$\begin{split} \frac{\partial u}{\partial t}(r,z,t,E_e) &= \frac{1}{r}\frac{\partial}{\partial r}\left(rD_r\frac{\partial u}{\partial r}(r,z,t,E_e)\right) + \frac{\partial}{\partial z}\left(D_z\frac{\partial u}{\partial z}(r,z,t,E_e)\right) + \\ &+ \mathcal{S}(r,z,t,E_e) + \frac{\partial}{\partial E_e}\left(\frac{\partial E_e}{\partial t}u(r,z,t,E_e)\right) \end{split}$$

Leptons are injected with a source term following: $S(r, z, t, E_e) = S_0(1 + t/\tau_0)^{-\frac{n+1}{n-1}} (E_e/\text{GeV})^{-\alpha} e^{-E_e/E_{\text{cut}}} \delta(r, z)$ Normalized by imposing $W_e = 1.1 \times 10^{49} \ erg$. We assume $D_{\parallel} = D_Z = D_0 (E/E_0)^{\delta}$, with $E_0 = 1$

GeV, $D_0 = 3.8 \times 10^{28}$ cm²/s and $\delta = 0.33$ (Kolmogorov spectrum).

These leptons generate γ -rays via IC emission, which follow the same spatial distribution as the lepton distribution (*Rate of energy loss:* $\frac{\partial E_e}{\partial t} \propto E_e^2$)

Anisotropic diffusion - Morphological consequences

A variety of shapes and sizes is expected for different objects and inclination angles!

Anisotropic diffusion - Morphological consequences

A variety of shapes and sizes is expected for different objects and inclination angles!

We impose <u>two criteria</u> to determine the values of ψ_{Incl} and M_A that are compatible with the observations of a **few TeV halos observed** (5 out of the 11 brightest pulsars – Linden et al PRD 96, 103016, 2017) based on the size of the halo along the parallel and perp. axes

How to estimate the "size" of a diffuse object?

Computing the percentage of particles that are contained within a given extension, so that we can quote the size of an object at a given containment (e.g. at 68% or 95% of particles contained)

How to estimate if an object is symmetric?

Comparing the extension of an object in one axis with respect to the other axis

Size condition: The size of the halo must be smaller than the size of the Geminga -Abeysekara et al. Science 358 6365 (2017) - to be a valid candidate. Comparison with the size of the halos at equal containment. The size depends also on the value of D_0 !

For details: <u>https://github.com/tospines/Analyses-and-plotting-codes/blob/main/Anisotropic_TeV_Halos/Main_numbers-TeV_Halos.ipynb</u>

PDTL, O. Fornieri, T. Linden (2022) ArXiv:2205.08544

Symmetry condition: Given that all TeV halos seem to be compatible with roughly symmetric shape, the extension of halo along an axis can not be much different to the extension along the other axis. We impose that Z/R < 2.

The larger the level of anisotropy (smaller M_A) the more asymmetric the halo is

It is independent of the value of D_0 !

PDTL, O. Fornieri, T. Linden (2022) ArXiv:2205.08544

Symmetry condition: Z/R < 2Size condition: $\theta_c < Geminga$ size

Only if the object is extremely well aligned with our line of sight (ψ_{Incl} < 5°), the halo will be compatible with the symmetry and size reported

$$P\binom{5}{11} \sim 3.6 \times 10^{-10}$$

* It is tremendously unlikely that all TeV halos are aligned in the same way!

Why aren't there anisotropic features?

Self-generation of turbulence may explain the isotropization of the distribution of leptons.

Streaming instability seems insufficient

Schroer+ MNRAS 512, 1, (2022)

Why aren't there anisotropic features?

Self-generation of turbulence may explain the isotropization of the distribution of leptons.

Streaming instability seems insufficient

How to spot signatures anisotropic transport?

➤ Use ellipsoid/oval templates instead of gaussians to search for TeV sources

Sara Coutiño de León $\gamma - 2022, Barcelona$

How to spot signatures anisotropic transport?

> Surface brightness assumes symmetry! \rightarrow Report the profile along different directions

PDTL, O. Fornieri, T. Linden (2022) ArXiv:2205.08544

Conclusions

- **TeV halos** are newly discovered sources that allow us to improve our understanding on the interactions of particles with plasma turbulence
- Need of more observations to stablish the nature and "commonness" of TeV halos. The emission from these objects can have important implications in the measurements of leptons at Earth and the diffuse gamma-ray emission
- Anisotropic diffusion as the production mechanism of TeV halos seems to be tremendously unlikely, although dedicated searches for anisotropic features are need!
- <u>Self-generation of turbulence</u> could explain why we do not observe anisotropic signatures of diffusion but the knowledge on the instabilities triggered by cosmic rays is very limited yet... **Stay tuned!**

Pedro de la Torre Luque Stockholm University

pedro.delatorreluque@fysik.su.se

BACK-UP slides

Anisotropic diffusion cannot explain TeV halo observations

P. De la Torre Luque (OKC, Stockholm), O. Fornieri (GSSI, Italy), T. Linden (OKC, Stockholm) ArXiv: 2205.08544

Why to study TeV halos?

- Injection mechanism of PWNe (PeVatrons?)
- Environments of PWNe and SNRs as well as the mechanism of gamma-ray emission, pulsar evolution, ...
- Background diffuse gamma-ray spectrum in the Galaxy (Astrophysical plasmas, magnetic fields, ionization rates in MCs)
- Galaxy formation See Semenov et al (2021) 2012.01427
- CR lepton spectrum (DM hints?)

A few basics

Charged particles are accelerated at shocks! Both in SNRs and in PWN

- These sources are bright in gamma rays due to hadronic and leptonic emission processes
- Diffusion occurs because of scattering of charged particles with MHD waves

 $\frac{\partial u}{\partial t}(r,z,t,E_e) = \frac{1}{r}\frac{\partial}{\partial r}\left(rD_r\frac{\partial u}{\partial r}(r,z,t,E_e)\right) + \frac{\partial}{\partial z}\left(D_z\frac{\partial u}{\partial z}(r,z,t,E_e)\right) + \frac{$ $+\mathcal{S}(r,z,t,E_e) + \frac{\partial}{\partial E_e} \left(\frac{\partial E_e}{\partial t} u(r,z,t,E_e) \right)$

The size of the object depends on the angle at which we observe it!

Z-R plane

Z-axis at 90° angle with respect our line of sight

X-Y plane

Z-axis parallel to our l.o.s.

* It is tremendously unlikely that all TeV halos are aligned in the same way

PWN around the pulsar (lepton emission) $O(\Gamma) = O_{1} \Gamma^{-1}$

 $Q(E) \sim Q_0 E^{-\gamma}$ with $\gamma = 1.6$

Diffusion coefficient

$$D \sim D_0 \frac{E^{\delta}}{1 \text{GeV}}$$
 with $\delta = 1/3$
 $\lambda_c \approx 0.3 D_{0, 28} \frac{E^{\delta}}{1 \text{GeV}}$ pc with $D_{0, 28} = 3.8$

Inhomogeneous diffusion (w.r.t. the pulsar **B**) $D_{\perp} = M_A^{-4} D_{\parallel}$

$$\begin{split} \frac{\partial u}{\partial t}(r,z,t,E_e) &= \frac{1}{r} \frac{\partial}{\partial r} \left(r D_r \frac{\partial u}{\partial r}(r,z,t,E_e) \right) + \frac{\partial}{\partial z} \left(D_z \frac{\partial u}{\partial z}(r,z,t,E_e) \right) + \\ &+ \mathcal{S}(r,z,t,E_e) + \frac{\partial}{\partial E_e} \left(\frac{\partial E_e}{\partial t} u(r,z,t,E_e) \right) \end{split}$$

The **Milky Way** is a magnetised plasma medium following the Magnetohydrodynamic equations

 $B = B_0 + \delta B \rightarrow \langle B \rangle = B_0$ $E = 0 + \delta E \rightarrow \langle E \rangle = 0$

The generation of waves in the interstellar plasma makes things a lot more complex!

Plasma waves are generated from <u>instabilities</u> in the chill plasma medium. This creates <u>turbulence</u> that cascade from higher to smaller scales propagating <u>waves</u> that exchange energy and momentum with cosmic rays and the plasma itself The **Milky Way** is a magnetised plasma medium following the Magnetohydrodynamic equations

 $B = B_0 + \delta B \rightarrow \langle B \rangle = B_0$ $E = 0 + \delta E \rightarrow \langle E \rangle = 0$

Alfven waves are circularly polarized whose resonant interaction governs the CR scattering

The **Milky Way** is a magnetised plasma medium following the Magnetohydrodynamic equations

Alfven waves are circularly polarized whose resonant interaction governs the CR scattering

TeV halo candidate list from the Third HAWC Catalog (3HWC, Albert et al. 2020) for a 1523-day data set (November 2014, June 2019)

HAWC	l (°)	b (°)	Pulsar	Age (kyr)	\dot{E} (erg s ⁻¹)	Distance (kpc)	Separation (°)	TeVCat
3HWC J0540+228	184.58	-4.13	B0540+23	253.0	4.09e+34	1.56	0.83	HAWC J0543+233
3HWC J0543+231	184.67	-3.52	B0540+23	253.0	4.09e+34	1.56	0.36	HAWC J0543+233
3HWC J0631+169	195.63	3.45	J0633+1746	342.0	3.25e+34	0.19	0.95	Geminga
3HWC J0634+180	195.00	4.62	J0633+1746	342.0	3.25e+34	0.19	0.38	Geminga Pulsar
3HWC J0659+147	200.60	8.40	B0656+14	111.0	3.8e+34	0.29	0.51	2HWC J0700+143
3HWC J0702+147	200.91	9.01	B0656+14	111.0	3.8e+34	0.29	0.77	2HWC J0700+143
3HWC J1739+099	33.89	20.34	J1740+1000	114.0	2.32e+35	1.23	0.13	
3HWC J1831-095	22.13	0.02	J1831-0952	128.0	1.08e + 36	3.68	0.27	HESS J1831-098
3HWC J1912+103	44.50	0.15	J1913+1011	169.0	2.87e+36	4.61	0.31	HESS J1912+101
3HWC J1923+169	51.58	0.89	J1925+1720	115.0	9.54e+35	5.06	0.67	
3HWC J1928+178	52.93	0.20	J1925+1720	115.0	9.54e+35	5.06	0.85	2HWC J1928+177
3HWC J2031+415	80.21	1.14	J2032+4127	201.0	1.52e+35	1.33	0.11	TeV J2032+4130

Note. The age of the pulsar in kyr and the spin-down luminosity, \dot{E} , in erg s⁻¹ are also given. The Separation column indicates the angular distance between the HAWC source and the ATNF pulsar (Manchester et al. 2005). The TeVCat column lists the previously detected TeV counterpart of each source.

Abeysekara et al 2017

Dependence of the flux with the size of the object

$$\frac{dN}{d\Omega} = \frac{1.22}{\pi^{3/2}\theta_{\rm d}(E)(\theta + 0.06\theta_{\rm d}(E))} \times \exp\left[-\frac{\theta^2}{\theta_{\rm d}(E)^2}\right]$$

t_e is the cooling time.

At $E \le \sim 100$ GeV the object seems asymmetric because of its movement and the fact that at these energies π^0 decay is the main source of gamma rays

NASA's Goddard Space Flight Center/M. Di Mauro

Ballistic propagation preceding diffusive propagation

