Modeling the Black Hole Spin Eugenio Bottacini

University of Padua (Italy)

Image Credit: ESO, ESA/Hubble, M. Kommesser

https://doi.org/10.1093/mnras/stac1890

3C 279 Bottacini et al. 2016 10⁻⁷ Leptonic Model Lepto-Hadronic Model Synchrotron Component 10⁻⁸ EC BLR EC Disk SSC component Electron Synchrotron 10⁻⁹ Proton Synchrotron $u \, {\cal F}_{
u}$ [erg cm $^{-2}$ s $^{-1}$] 10⁻¹⁰ 10⁻¹¹ 10⁻¹² 10⁻¹³ 10⁻¹⁴ 10^{18} 10¹² 10²³ 10¹³ 10^{14} 10¹⁵ 10¹⁶ 10¹⁷ 10¹⁹ 10²⁰ 10²¹ 10²² 10²⁴ 10²⁵ 10²⁶ Frequency [Hz]

Formation of Jets

From General Relativistic Magneto-Hydrodynamic simulations (e.g. De Villiers & Hawley 2003; McKinnery 2006) accreting and rotating black holes form jets: the higher the spin, the higher the jet power.

Signatures of Spinning Black Holes

Image Credit: NASA/JPL Caltech

0.5 1 1.5 $\nu_{\rm obs}/\nu_{\rm em}$

Spin Measurements through X-Ray Spectra

Mrk 876: A Gravitationally Redshifted Fe Line

7

NuSTAR Broadband Spectrum (30 ksec)

NuSTAR + Swift/BAT Broadband Spectrum

Monte Carlo Simulation of Broad Low-Energy Excess

Relativistic Reflection off the Accretion Disk

Simulating the BH Spin

Take-Home Message

Spin measurements are important as jets accelerate CRs

Statistics very limited

Mrk 876: an explanatory example

https://doi.org/10.1093/mnras/stac1890

Back Up

Back Up

Back Up

