TIME-DEPENDENT PROPAGATION TIMES AND ENERGY LOSSES OF PROTONS IN THE HELIOSPHERE:

A SOLAR MODULATION MODELLING IN LIGHT OF NEW COSMIC-RAY DATA FROM OBSERVATIONS

Behrouz Khiali, Bruna Bertucci, Emanuele Fiandrini, Nicola Tomassetti

ASI - SSDC and INFN – Roma Tor Vergata, Italy

University of Perugia & INFN; ASI-UniPG 2019-2-HH.0

Galactic Cosmic Rays

Voyagar 1 ሃ

Voyager

Heliosphere

The galactic cosmic rays enter the heliosphere through a combination of diffusion (random walk) and drift

Solar Modulation

Main attributes:

- Out-flowing Solar wind
- Frozen-in turbulent Magnetic Field
- Cyclic time-dependent activity

- This leads to significant global and temporal variations in their intensity and in their energy as a function of position inside the heliosphere.
- This process is identified as the solar modulation of cosmic rays.

The Golden Age:

Data from Interstellar medium taken by Voyager 1 & 2

Propagation in the heliosphere

The Parker evolution equation for the cosmic ray density

The calculations

- Parker equation for the cosmic ray (CR) density in the heliosphere
- Stochastic method: Monte-Carlo simulation of CR trajectories
- Grid scan over free parameters and statistical data analysis

Key data

- Voyager-1: the CR proton flux outside the heliosphere (LIS)
- AMS-02: monthly variations of the CR proton fluxes since 2011

PAMELA: monthly variations of the CR proton
 fluxes since 2006

Key ingredients

1. Rigidity- and time-dependent diffusion: K(R, t)

 $K(R,t) = \begin{cases} K_0(t) R_k^{a(t)} & (R_k < 3GV) \\ K_0(t) R_k^{b(t)} & (R_k > 3GV) \end{cases}$

2. Improved 2D description of the heliosphere
 3. Time-dependent B-field, current sheet, solar wind

Example: 1 GeV proton trajectory

The calculations

- Parker equation for the cosmic ray (CR) density in the heliosphere
- Stochastic method: Monte-Carlo simulation of CR trajectories
- Grid scan over free parameters and statistical data analysis

Key data

- Voyager-1: the CR proton flux outside the heliosphere (LIS)
- AMS-02: monthly variations of the CR proton fluxes since 2011
- PAMELA: monthly variations of the CR proton

fluxes since 2006

Key ingredients

1. Rigidity- and time-dependent diffusion: K(R, t)

 $K(R,t) = \begin{cases} K_0(t) R_k^{a(t)} & (R_k < 3GV) \\ K_0(t) R_k^{b(t)} & (R_k > 3GV) \end{cases}$

2. Improved 2D description of the heliosphere
 3. Time-dependent B-field, current sheet, solar wind

Example: 1 GeV proton trajectory

The model has 6 parameters:

- 1. Tilt Angle $\alpha_{T}(t)$,
- 2. HMF at Earth B₀(t),
- 3. Polarity of the HMF A(t),
- Fix the HS status at a given epoch

Fit the data

4. Diffusion coefficient normalization $K_o(t)$, 5. Diffusion spectral indices, *a(t)* and *b(t)*, and R_k respectively

6. The break was fixed at $R_k = 3 \text{ GV}$

Key results

- ✓ Data-driven determination of the key diffusion parameters as function of time
- Relations between the CR diffusion parameters and solar activity indices
- Inter-relations among the CR parameters

In the A > 0 drift cycle, GCR protons generally drift from the polar regions to reach Earth, whereas, in the A < 0 cycle, they mainly drift along the Heliospheric Current Sheet

Binned Propagation time

This is consistent with general drift considerations: For the A < 0 cycle, the protons that reach Earth have to drift inward along the heliospheric current sheet (HCS), taking a much longer time to reach Earth than protons which simply drift toward Earth from the polar regions in the A > 0 cycle.

Binned Energy Loss

 E_F = At the boundary E_i = Near the Earth Energy Loss = $\frac{E_F - Ei}{E_F}$

Results: Application to AMS and PAMELA

The new precise data from AMS02 and PAMELA experiments offer a unique possibility to study

the solar modulation over a long period of time

The model was applied to:

- Bartel-rotation averaged Pamela data sets from 2006/6 to 1/2014 [ApJ 742 (2011) 10, ApJ 765 (2013) 91]
- Bartel-rotation averaged AMS02 data sets from 2011/7 to 2017/6 [PRL 121 (2018) 0511

Results: Application to AMS and PAMELA

A set of modulated proton fluxes were produced over
the points of a discrete 6-D grid of model parameters:
α (5°, 75°) with step 5°
B_0 (0.7, 1.5) in units of 5 nT with step 0.1
Polarity A = 1 and -1
K_0 (0.1, 0.9) with step 0.1 in units of 1.678 x
10 ²³ cm ² s ⁻¹
<i>a</i> (0.45, 1.4) with step 0.05
<i>b</i> (0.45, 1.65) with step 0.05
Total of 1.215×10 ⁶ models fluxes $J_m(E,q)$ with 2×10 ³
pseudo-particles for each of the 60 energy bins from
20 MeV to 200 GeV with log step, one for each of the
parameters vector q (a, B_0 , A, K_0 , a, b)

Fiandrini et al. 2021 Phys.Rev. D. 104, 023012

Results: Application to AMS and PAMELA

Applying the model for **Bess**, **SOHO/EPHIN**, **PAMELA**, and **AMS-02**

By N. Tomassetti

Applying the model for Bess, SOHO/EPHIN, PAMELA, and AMS-02

Applying the model for Bess, SOHO/EPHIN, PAMELA, and AMS-02

Results: Energy at Earth- Propagation Time

Results: Energy at Earth- Energy Losses

Conclusions

> We use a stochastic model where we simulate particle trajectories.

The model (the parameters of CR diffusion) is tuned to the observational time dependent CR fluxes: AMS-02, PAMELA, BESS, and SOHO/EPHIN, covering solar cycles

Other physical inputs of the model are taken from direct observations of the Sun (WSO: tilt, B-field intensity, polarity)

We are looking at particle trajectories, propagation times of CRs, and their energy losses, using our model that is global tuned over a large time interval

> The evolution of CR propagation time and their energy losses are correlated with solar activities

