

Shefali for the IceCube Collaboration ECRS 2022, Nijmegen, Netherlands

IceCube Neutrino Observatory

IceTop Cherenkov detectors

Digital Optical Modules (DOMs)

- DOMs detect Cherenkov radiation from neutrino interactions in ice
- IceTop: The surface instrumentation of IceCube
 - Veto and calibration for the In-Ice detector
 - Better understanding of the background from the atmospherics neutrinos and muons
 - Unique opportunity for cosmic ray physics

> Challenges:

Non-uniform snow accumulation on surface detectors → Lower threshold and increased uncertainty

Surface Array Enhacement

- IceTop surface array enhancement planned with 32 stations by 2026
- ➤ One Surface Array enhancement (SAE) station:
 - 3 radio antennas
 - 8 scintillation detectors
 - 1 central fieldhub DAQ
- ➤ Science Case:
 - Vetoing the atmospheric neutrinos to increase the in-ice astrophysical neutrino detection
 - Measuring the energy spectra and composition of cosmic rays in a wide range
 - Validation of hadronic interaction models
- This requires,
 - Lower energy threshold for air shower measurements
 - Mitigate the effect of snow accumulation on the IceTop detectors
 - Multi-component observation of air showers

Prototype Station

Karlsruher Institut für Technologie

- Complete prototype station since January 2020 at the pole
- Air shower reconstruction with the prototype station already achieved
- Individual data streams for reconstruction:
 - IceTop data
 - Radio data
 - Scintillator data
- > 3 scintillator detections within 1µs : scintillator event
- Radio antennas triggered from >6 scintillator coincidences
- All three detectors recording event with 2µs considered a triple coincidence event and reconstruction achieved
- Combined reconstruction planned for the future array

Scintillation Panels

Components of a scintillation detector:

- ➤ 16 plastic scintillation bars made of polystyrene
- Wavelength-shifting fibers routed through two holes in the scintillation bars and glued to the Silicon Photomultiplier (SiPM) using a PMMA coupler
- A custom microDAQ board used to digitize and read out the SiPM signals
- The detector inlay is the wrapped in a light tight foil and finally an aluminum casing

> Working Principle:

- A minimum ionizing particle (MIP) traversing through the panel interacts with scintillation bars
- Excitation and de-excitation of valence electrons produces photons
- Photons are transferred by the fibers and converted into photoelectrons by an SiPM

Production at KIT

Data Acquisition of the detectors

- The event peaks recorded by SiPM are read out and digitized with MicroDAQ
- Temperature readout placed next to the SiPM
- 3 ADCs for 3 different gain channels are implemented
- 1Hz CPU triggers to capture pedestal
- > Two measurement modes:
 - Hitbuffer Measurements: For each hit, timestamp, charge from each channel and CPU trigger is recorded
 - Histogram Measurements: charge of the hits saved as a histogram in the buffer of the microprocessor (Convenient for longer measurements)
 - > Three gain levels to have a wide dynamic range
 - ➤ ADC12 = low gain, ADC2 = medium gain,

ADC0 = High gain

Performance tests in Karlsruhe

- Measurements performed at low temperatures in a freezing facility at -20 and -10 °C:
 - > Finger spectra: Single photoelectron peaks
 - > Higher gain at lower temperatures: with in the expected range, as measured from the Prototype station
- > Lots of shielding and experimental setup in the campus
 - > Remote measurements to achieve minimum RFI noise : Significant MIP peak visible

Remote Tests in Madison

Karlsruher Institut für Technologie

- After production and functionality tests at KIT, 8 scintillation panels and a Field hub DAQ sent to IceCube headquarter (Madison)
- > The system placed in a cooling chamber
- Remote measurements: Histogram measurements at : 22, -15, -30 and -40 °C (High gain results presented)
- Increase in gain with decrease in temp as expected
- Finger Spectra visible at negative temperatures

Barracks Measurements

- To shield from RFI, faraday cage like structure (metal container room: Barracks), used for final testing at KIT
- Furthermore, to shield from natural radioactivity, lead shielding setup for the panels constructed

Shielded Non-Shielded

Energy Calibration of the detectors' ADC

- Radioactive sources used for the energy calibration of the Scintillation panels:
 - ➤ Gammas: Cs 137, and Na22
 - Neutrons: AmBe
- Energy calibration can be achieved by calculating the conversion factor for deposited energy from muons to gammas with existing simulations
- ➤ Coming soon!!

Energy Calibration of the detectors' ADC

Conclusion and Outlook

- The scintillators with updated readout electronics are functional and comparable to the prototype station
- The existing prototype scintillators will be replaced by the updated panels in Antarctic season 2022-23
- > The deployment of more stations is planned for the upcoming Antarctic summers depending on the pandemic
- > Series production of 4 complete stations and inlay for additional 5 stations is complete
- Setup for the functionality tests of the panels with the lead shielding at KIT is being used for calibration of detectors
- Energy calibration of the stations coming soon!

