

Berillium in Cosmic Rays (CR)

Berillium in Cosmic Rays (CR)

- ⁷Be is stable if completely ionized, otherwise decays rapidly by electronic capture
- ⁹Be is stable
- 10 Be is unstable, with a decay time comparable with residence time of CR in the Galaxy ($^{\sim}$ 1.39 x 10 6 anni)

¹⁰Be/⁹Be is a powerful "radioactive clock" for the measurement of residence time

 As every sec/prim ratio, it can constrain the grammage

$$X(E) = \int dl \rho(l)$$

which is prop. to H/D

- H and D are thus dependent in many prop. models
- Adding a time dependence,
 10Be/9Be can constrain D, allowing an independent measurement of H

AMS and light isotope measurements

- AMS is composed by different sub-detectors for the redundant ID of the elements in CR
- The Mass is identified from the concurrent measurement of Rigidity, Velocity and Charge

TOF	σ _β /β ~ 1%	0.2 < E _k < 1.1 GeV/n
RICH NaF	σ _β /β ~ 0.3%	0.7 < E _k < 3.7 GeV/n
RICH Agl	$\sigma_{\beta}/\beta \sim 0.1\%$	2.6 < E _k < 8.0 GeV/n

Isotopic identification with AMS02

$$M = \frac{RZ}{\gamma\beta} \Rightarrow \frac{\Delta M}{M} = \sqrt{\left(\frac{\Delta R}{R}\right)^2 + \left(\gamma^2 \frac{\Delta \beta}{\beta}\right)^2}$$

 $\Delta m \approx 1$ amu: Event by event ID not reachable

isotopic abundance from shape of the mass distributions

Measurement of Isotopic Fluxes

- Isotopic fluxes estimated from the event rates vs. mass for each Ekin bin obtained from beta measurements by TOF, NaF, Agl
- Fitted with the sum of scaled mass templates for each isotope
- Mass templates include:
 - Detector Acceptance from MC
 - Data/MC correction
 - Energy migration
 - R and beta responses

 Unfolded fluxes directly obtained from fitting procedure

Fitting of Be rates

⁷Be
⁹Be
¹⁰Be
ISS data

Be Isotopic fluxes

- Isotopic fluxes obtained from the fit for the 3 ranges
- Based on 0.4 millions beryllium events
- Include Data/MC and unfolding corrections
- Correction from bkgnd coming from interaction of heavier nuclei above L1
- Statistical error only

Be Isotopic fluxes

- Combining the overlapping Ekin regions.
- Statistical error only

10

Errors on Isotopic fluxes

- Stat. and syst. (mass id.-acceptance-survival prob.-background-unfolding) errors.
- Estimated with the full covariance matrix: important to describe correlation between energy bins and different isotopes.

→Total (stat+sys) correlation matrix used to compute errors for rebinned flux and ratios.

Be Isotopic fluxes

Combined and rebinned fluxes from AMS 02 and comparison with previous experiments.

Stat+Sys errors computed from covariance matrix.

☐ First measurement of ⁷Be, ⁹Be and ¹⁰Be fluxes above 0.4 GeV/n and up to 11 GeV/n.

Be Isotopic fluxes ratio against Ekin

- Ratios computed from the fluxes.
- Errors from the total covariance matrix to take into account correlations between isotopes.
 - ☐ First measurement of
 - ⁹Be/⁷Be fluxes ratio above 0.5 GeV/n
 - ¹⁰Be/⁹Be fluxes ratio above 2 GeV/n

Fitting ¹⁰Be/⁹Be Isotopic ratio

 \bullet Galactic diffusion halo size L fitted on AMS02 data with an analytical formula from D. Maurin et al. (arXiv:2203.07265) :

- Precision on L from AMS02 data $\sim \pm 0.2 kpc$
- Error dominated by uncertainty from production cross-section $\pm 1 kpc$.

Conclusions

- Isotopic composition of Beryllium in cosmic rays is a key measurement to understand cosmic rays origin and propagation.
- Dedicated method based on template used to fit the event rates vs.
 mass to measure the isotopic fluxes.
- Measurement of Beryllium isotopic fluxes and ratios between 0.4 GeV/n and 11 GeV/n with systematic errors and associated covariance matrices have been presented.
- Provides precise data, on an extended energy range, to constrain the galactic halo size and the age of CRs.

The "Data Driven" approach (how to get rid of MC)

A self-consistent approach to extract isotope mass distributions from data itself. (it is a solution of the 3x3 equation system of the mass distributions: "templates")

An intuitive/graphical view: The unknown templates are related by: dM/M = constant Linear transf. approximation: templates are related by (known) coordinate dilatation

