The 27th European Cosmic Rays Symposium July 25-29, 2022 Nijmegen, the Netherlands

Properties of Cosmic Deuterons and ³He

F. Giovacchini - CIEMAT on behalf of the AMS Collaboration

EXCELENC

DE MAEZTU

MARÍA

Ciemat

otro de Investigacion

Deuterium and Helium Isotopes in Cosmic Rays

Precise measurements of primaries and secondary elemental fluxes by AMS → important information to understand the origin and the propagation of Cosmic Rays

More detailed insight from isotopic composition (see F. Dimiccoli: Be isotopes).

- Helium nuclei are the second most abundant nuclei in cosmic rays.
- ²H and ³He are mostly produced by the fragmentation of ⁴He: simpler comparison with propagation models than with heavier secondary to primary nuclei ratios.
- The small cross section of He with respect to heavier nuclei, allows ²H/⁴He and ³He/⁴He to probe the properties of diffusion at larger distances than any secondary to primary ratio.
- In addition, the different A/Z ratios of ²H and ³He allow to disentangle kinetic energy and rigidity dependence of propagation.

Isotopes identification in AMS

Data sample

10 Years AMS Data: from May 2011 to May 2021

Total exposure time 2.2x10⁸ seconds

Z=1

Selected events	Above cutoff	Protons	Deuterons
8.7 10 ⁹	5.0 10 ⁹	4.9 10 ⁹	1.0 10 ⁸

Z=2

Selected events	Above cutoff	⁴ He	³ He
1.2 10 ⁹	7.2 10 ⁸	6.5 10 ⁸	6.9 10 ⁷

He & H Isotopes identification in AMS

H Isotopes identification in AMS Analysis methodology

Global fit of R vs β with a common flux for each data sample

Beta ~ 0.985

He Isotopes identification in AMS Analysis methodology

Global fit of R vs β with a common flux for each data sample

Counts

data He 10⁵ ³Не background Model 10⁴ **Z=2 RICH** aerogel data 10³ 10² 10^{-1} Rigidity (GV) 10 1

Beta ~ 0.985

He & H Isotopes identification in AMS Separation results

ECRS 2022, Nijmegen

F.Giovacchini - CIEMAT

³He Flux

³He flux averaged in time as a function of rigidity

²H Flux

²H flux averaged in time as a function of rigidity

Flux temporal variation

RMS of data compared with total error.

Time variations are not compatible with systematics below ~5 GV.

³He/⁴He and ²H/⁴He Flux ratios

10 years AMS-02

Flux ratio: time evolution

R<5GV

Summary

- We presented the AMS-02 measurement of the ³He and ²H fluxes based on 10 years data. The measurements cover the rigidity range from 2 GV to 20 GV where there was substantially no data.
- Above ~ 5 GV the ³He/⁴He and ²H/⁴He flux ratios are time independent and their rigidity dependences are well described by single power laws. The spectral indexes seem to be different for the two species.
- The AMS-02 large acceptance allow for study of the flux variability with time. Below ~ 5 GV we can observe time evolution in ³He and ²H fluxes which are qualitatively similar to those of ⁴He. However, the relative amplitudes among the two species are slighly different.

Thank you!

Primary and secondary Cosmic Rays Primary cosmic rays (p, He, C, O, ...) are mostly Supernova produced during the lifetime of stars and are accelerated in supernovae shocks. ⁴He Carbon Oxygen Secondary cosmic nuclei (²H, ³He, Li, Be, B, ..) are produced by the collision of primary cosmic 6 rays and the interstellar medium. ³He 10**B** ¹⁰Be 10BECRS 2022, Nijmegen F.Giovacchini - CIEMAT

16

He isotopes identification with AMS

TOF 💉 **UPPER TOF** PLANE 1 PLANE LOWER TOF PLANE 3 PLANE 4 **RICH** Aeroge Mirror PMT matrix

 β Measurement: TOF, RICH

ECRS 2022, Nijmegen

Light Isotope separation with Templates

Three concurrent analysis approaches

Templates Based

INFN-TIFPA (Trento - ITA)

UNIV. OF HAWAI'I (USA)

2D Unfolding

CIEMAT (Madrid - Spain)

Mass Template Fit

- Templates from MC sim.
- Fine tuning of β resp. function
- Time dependence of templates
- p and Ds from CR
- T from He internal fragmentation ->
 - constraints to He->p and He->D

Flux Unfolding

- D'Agostini iterative unfolding method
- Migration matrix from tuned MC sim.
- Applied independently for each subdetector

Helium Isotopes ratio vs R

ECRS 2022, Nijmeg

Helium Isotopes Flux vs R

The ³He and ⁴He fluxes averaged in time as function of rigidity

³He and ⁴He and ratio time variation

ECRS 2022, Nijmegen

F.Giovacchini - CIEMAT