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Scientific motivations

® The logarithmic slope of galactic CR is connected to the diffusion properties
and the primary or secondary nature of the different species.

e The measured slopes are sometimes interpreted in the pure diffusive regime,
implying that additional effects at play (convection, reacceleration, and
destruction) can be neglected. This assumption leads to misleading
conclusions.

This talk is based on M. Veecchi et al, Front. Phys., 24 March 2022 Sec.High-Energy and Astroparticle Physics (open access)



Scienlific motivations and goals

® The logarithmic slope of galactic CR is connected to the diffusion properties
and the primary or secondary nature of the different species.

e The measured slopes are sometimes interpreted in the pure diffusive regime,
implying that additional effects at play (convection, reacceleration, and
destruction) can be neglected. This assumption leads to misleading
conclusions.

Using the code USINE for CR propagation and taking into account all relevant
processes, we study:

e the slope of the B/C in different propagation scenarios, and compare to the
B/C data from AMS-02.

e the flux slope for different CR species from H to Fe.
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Coamic ray transport in the galaxvy
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K(E): A two-break diffusion coefficient is used
Génolini et al PRL 119, 241101 (2017), Génolini et al Phys.Rev. D99 (2019)

9. A single power-low is used for the source term.

1D model and semi-analytic approach with the USINE code
[Maurin CPC 247 (2020) 106942, https://dmaurin.gitlab.io/USINE/


https://dmaurin.gitlab.io/USINE/
Manuela Vecchi


Cosmic-ray transport in the Galaxy
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e This equation couples about a hundred CR species (for £ < 30) over a nuclear
network of more than a thousand reactions.

e TJo solve this diagonal matrix of equations, we start with the heaviest nucleus,
which is always assumed to be a primary species, and then proceed down to
the lightest one.



Methodology

e We use the propagation scenarios described in [Génolini et al 2019], namely BIG, SLIM
and QUAINT, which provide an excellent fit to accurate description of the (Li, Be, B)/C
data from AMS-02 [Weinrich et al 2020].
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Methodology

e We use the propagation scenarios described in [Génolini et al 2019], namely BIG, SLIM
and QUAINT, which provide an excellent fit to accurate description of the (Li, Be, B)/C
data from AMS-02 [Weinrich et al 2020].

e For the nuclear production and spallation cross-sections, we use as reference the set of
tables from the Galprop package, following the approach described in [Génolini et al
2018] and recently updated as in [Maurin et al. 2022].

(http://lpsc.in2p3. fr/crdb)
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Methodology

e We use the propagation scenarios described in [Génolini et al 2019], namely BIG, SLIM
and QUAINT, which provide an excellent fit to accurate description of the (Li, Be, B)/C
data from AMS-02 [Weinrich et al 2020].

e For the nuclear production and spallation cross-sections, we use as reference the set of
tables from the Galprop package, following the approach described in [Génolini et al
2018] and recently updated as in [Maurin et al. 2022].

e The calculated fluxes are Top-of-Atmosphere quantities modulated with the force field
approximation. We obtain the modulation potential ¢ = 670 MV from https://Ipsc.in2p3.fr/crdb/
based on [Ghelfi et al. 2017]
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B/C alope v diffusion slope

The SLIM, QUAINT and BIG propagation
scenarios fit well the AMS-02 B/C dato.
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B/C alope v diffusion slope

Se = d[log¢]/d[logR] T e
Sk = d[logK(R)]/d[logR] = —51«
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B/C alope v diffusion slope
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e Slow convergence to the pure diffusive reglme
only above 200 GeV.

e Assuming the B/C slope directly prowdes the
slope of the diffusion coefficient strongly biases
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Understanding the slopes’ behavior

H HeliBe B C N O F NeNaMgAl Si P S Cl ArK CaScTi V CrMnFe
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° Ayz 0 for primary species
° Ayz -1 for secondary species
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Source slope for H and He are taken to be different from
that of all other nuclei

Slope of the diffusion coefficient for SLIM scenario
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Understanding the slopes’ behavior
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Slopes at 20 GV: Ay> 0 for all species.

The slopes of the measured fluxes are always
softer than those expected in the purely diffusive
regime.

For growing Z, the impact of inelastic
cross-sections is also rising (growing A ) and
causing an increasing difficulty to identify which
species are of primary or secondary origin.
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Understanding the slopes’ behavior

Pure diffusion reached above 200 GV: primary
species have Ay= 0 and secondary species on Ay= -1

For Z> 20 where inelastic interactions still have a
significant impact even at 200 GV.

In principle, for the highest rigidity shown, i.e., 2 PV
(where the asymptotic diffusive regime holds), the
heavy species should also converge to 0 or -1.

H HeliBe B C N O F NeNaMgAl Si P S Cl ArK CaScTi V CrMnFe
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Comparison to AIMS-02 dala

Se = d[log¢]/d [logR]
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----- - 1 up to tens of TV, are ordered and shifted according
to their growing destruction cross-section, before all
slopes converge to the “universal” secondory flux
slope;

e the same ordering is observed for O (£=38), Si (£ =
14), ond Fe (Z = 26), though these species now
converge towards the “universal” primary flux slope
in our model;

e N (Z=7)is a mixed species: its flux slope starts close
to the “pure secondary" group and ends up close to
the “pure primary" group.
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.. and expectations for £=15-25 elemenis
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Z>14 elements have not yet been measured by AMS-02
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e Ca (£=20) aolready has a primary
fraction of 30% ot 20 GV.

e S (Z=16 and Mn (Z = 25), fall
between K (and Sc) and Ca in
terms of their primary content

~

K (Z=19) and Sc (Z = 21)|have o
(negligible) primary fraction very
similar to that of F .
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Slope dependence on Z

We find a very good agreement between the modelled slopes and the measured ones
(except for H and Fe).
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Summary

To conclude on the source slope or diffusion slope, the AMS-02 data should be
used together with an underlying propagation model, since the purely
diffusive propagation regime is only reached above hundreds of TV.

The competition between inelastic interactions (growing with 2) and primary
content of the elements (growing with R) leads to non-trivial dependencies of
the flux slopes.

Despite the non-trivial behavior, slopes are a useful tool to obtain information
on breaks, CR primary or secondary origin, and on whether the measured
slopes reach the expected asymptotic regime.
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