Towards Neutrino Detections with the Radio Neutrino Observatory Greenland

Ilse Plaisier for the RNO-G collaboration

A Step Forward in Detecting UHE Neutrinos

- Aiming for UHE, cosmogenic and astrophysical v's beyond PeV scale
- Larger detectors than the current ones are needed for low flux at these energies
- Sparse arrays can be built due to attenuation length of O(1km).
- Sensitive to northern sky

RNO-G Planned Layout

- Current funding for 35 stations
- Located at Summit Station, Greenland
- 3 km ice-sheet
- 1.25 km spacing to maximize effective volume
- RNO-G stations are scalable

RNO-G Station Design

Shallow Component

• talk tomorrow 17:15 Lilly Pyras

Deep Component

- Three 100 m deep strings
- 1 power string: trigger and antennas along the full string
- 2 *helper strings:* for azimuthal reconstruction

Phased Array Trigger

• For low-threshold triggering to maximize effective volume

Drilling

100 meter deep and 300 years old ice

Custom mechanical drill developed by the British Antartic Survey for RNO-G Possible to drill a 100 meter hole per day

Power and Communication

Autonomous stations using solar panels

Wind turbines are added right now!

LTE and LoraWAN communication to Summit Station

First year of data taking...

- Stations deployed first season had self-induced noise (communication antenna and batteries)
 Resolved for new stations
- CW events (hand radios, aircraft)
- snow mobiles
- Higher event rate for days with higher winds

Wind events arXiv:2103.06079

Calibration Data

- Published attenuation length of the Greenlandic ice
- New data taken this year (at the moment):
 - azimuthal response antennas
 - reflective layers

- antenna positions
- snow accumulation

Direction Reconstruction

Shower Geometry

Shower Geometry

The **signal direction**, **viewing angle** and **polarization** are needed to pin-point the neutrino direction

Antennas for horizontaly and vertically polarizated electric-field are needed (Hpols and Vpols)

Hole geometry makes design for Hpols more hard, which is therefore less sensitive

Shower Geometry

The signal direction, viewing angle and polarization are needed to pin-point the neutrino direction

.

Neutrino Zenith Dependence

- RNO-G not sensitive to vertical showers
- Bigger part of the cone is detectable for horizontal showers; more polarization options

Relevant Quantities for Angular Resolution

What is the probability of detecting a neutrino given a source? Point Spread Function

What is the probability of a source given a detected neutrino? **Single-Event Uncertainty Contours**

The Simple 1D Case

From Sky Area to Uncertainty Contours

Angular Resolution Results

Summary

- RNO-G funded to 35 stations -> first experiment sensitive to UHE neutrino flux predictions
- Currently 7 deployed stations
- Besides neutrinos, also cosmic-ray detector -> talk tomorrow 17:15 Lilly Pyras
- Pathfinder for IceCube-gen2 radio
- Angular resolution limited by polarization reconstruction -> Hpols
- Uncertainty contours ellipse-like
 - Dependent on viewing angle and polarization resolution
 - 10 deg² 90%-contours for high quality events

