

Galactic Longitude

Gamma-ray astronomy: coming of age and revolutions

Luigi Tibaldo luigi.tibaldo@irap.omp.eu

astrophysique & planétologie

IRAP, Université de Toulouse, CNRS, UPS, CNES

> ECRS, Nijmegen July 28 2022

Galactic Latitude

Galactic Latitude

• Introduction

- The coming of age of gamma-ray astronomy
 - Sources
 - Diffuse emission
 - Highlights on recent advances
 - Pulsar halos
 - Star-forming regions
 - VHE emission from gamma-ray bursts
- Revolutions
 - Multimessenger astronomy with gamma rays
 - The PeV frontier
- Future prospects

Gamma-ray production

Science with gamma rays

*Review by G. Zaharijas on dark-matter searches

Physical processes in extreme environments

Formation of heavy elements

Space telescopes

Ground-based detectors

• Introduction

- The coming of age of gamma-ray astronomy
 - Sources
 - Diffuse emission
 - Highlights on recent advances
 - Pulsar halos
 - Star-forming regions
 - VHE emission from gamma-ray bursts
- Revolutions
 - Multimessenger astronomy with gamma rays
 - The PeV frontier
- Future prospects

HE sources

4FGL-DR3 sources			
*	AGN	∇	star-forming reg.
0	SNR	٥	starburst gal.
+	PWN/halo	\triangleright	globular cluster
	PSR	\diamond	nova
♦	binary	×	unassociated

General LAT catalogs based on long-term significance: transients not included. The second LAT GRB catalog contains 186 GRBs not shown on this map.

VHE sources

Thanks to D. Horan and S. Wakely for sharing TeVCat data

HE and VHE source classes

Thanks to D. Horan and S. Wakely for sharing TeVCat data

Source diversity \rightarrow particle acceleration and transport in a variety of astrophysical conditions and environments.

A growing number of sources

Thanks to D. Horan and S. Wakely for sharing TeVCat data

- 63 sources in COMPTEL catalog
- 939 sources in the 17-100 keV energy range in INTEGRAL/ IBIS 1000-orbit catalog

- Introduction
- The coming of age of gamma-ray astronomy
 - Sources
 - Diffuse emission
 - Highlights on recent advances
 - Pulsar halos
 - Star-forming regions
 - VHE emission from gamma-ray bursts
- Revolutions
 - Multimessenger astronomy with gamma rays
 - The PeV frontier
- Future prospects

Diffuse emission

Anticenter clouds: Fermi vs Planck

Remy+ 2017 A&A 601 A78

- GeV: good correlation of gamma rays and interstellar matter → CR interactions
- Diffuse emission (not related to individual sources) detected from sub-MeV to sub-PeV energies

13 of 38

hresolved sources?

- Bouchet+ 2011 ApJ 739 29 10 ', ¦b∣′< 15 < 30' FLUX (Photons cm^{*} sec⁻ⁱ ke Vⁱ) 10 CR e 10 inverse-Compton 10 unresolved 10⁻⁵ sources positron annihilation 10-6 10 1000 100 ENERGY(keV) Orlando 2018 MNRAS 475 2 2724 10^{-1} E² Intensity [MeV cm⁻² s⁻¹ sr⁻¹] 10^{-2} **∮** 10^{-3} IC 10 10^{-1} 10^{0} 10^{1} 10 Energy [MeV]
- < MeV: 3 times higher than expected from AMS-02+local synchrotron and gamma rays
 - significant contribution from secondary positrons and electrons?
 - unresolved sources
- TeV-PeV → relevant to address hardening of CR nuclei spectrum in the inner Galaxy, unresolved sources under scrutiny

- Introduction
- The coming of age of gamma-ray astronomy
 - Sources
 - Diffuse emission
 - Highlights on recent advances
 - Pulsar halos
 - Star-forming regions
 - VHE emission from gamma-ray bursts
- Revolutions
 - Multimessenger astronomy with gamma rays
 - The PeV frontier
- Future prospects

Pulsar halos

 θ_{4} [deg] 3 2 6 7 8 1 1e-13 Diff. $D = 8 \times 10^{24} \text{ cm}^2/\text{s}$ Diff.+Ball. $D = 1 \times 10^{28} \text{ cm}^2/\text{s}$ 8 Diff. $D = 1 \times 10^{28} \text{ cm}^2/\text{s}$ $d\phi_{\gamma}/d\theta \,[\text{TeV/cm}^2/\text{s/sr}]$ 68% Band Diff. 68% Band Diff.+Ball. 6 Geminga HAWC E > 5 TeV Recchia+ 2021 PRD 104 12 123017 0 10 15 20 25 5 30 *r* [pc] Giacinti+ 2020 A&A 636 A113 FS Stage 1 (t < 10 kyr) Stage 2 (t ~ 10 - 100 kyr) CD , RS pulsar **SNR** velocity • < - - ISM density PWN gradient SNR ISM ISM (in all 3 panels) supernova Stage 3 (t > 100 kyr) trans transit remnant halo pulsar pulsar wind term. shock **SNR** pulsar wind nebula ISM ISM >10 TeV e+/trajectory PWN > 1 TeV gamma-ray

- HAWC: Geminga and PSR B0656+14 (> 100 kyr)
- Particles free from PWN
 - diffusion suppressed by ~100 w.r.t. Galactic "average"
 - or combination of ballistic + "average" diffusion?
- Few more candidates at TeV (transitional objects?) and tentative detection of Geminga halo with Fermi

Pulsar halos: how and how many?

- Suppression of diffusion coefficient?
 - additional turbulence of kinetic or fluid origin
 - reduced turbulence coherence length (< 5 pc)
- Contributions to source populations and diffuse emission?
 - positrons: occurrence < 10% in local middle-aged pulsars?

- Introduction
- The coming of age of gamma-ray astronomy
 - Sources
 - Diffuse emission
 - Highlights on recent advances
 - Pulsar halos
 - Star-forming regions
 - VHE emission from gamma-ray bursts
- Revolutions
 - Multimessenger astronomy with gamma rays
 - The PeV frontier
- Future prospects

Gamma rays from star-forming regions

3

2

-1

Gal. latitude (deg)

- Expected
 - good conditions for acceleration
 - targets
 - CR isotopic abundances
- More than 10 young star-forming regions possibly detected at GeV-TeV
 - caveats: limited angular resolution, foregrounds, source confusion
 - radial profiles → continuous CR injection + diffusion over few Myr

CR acceleration and gamma-ray emission

 Possible acceleration sites/ mechanisms:

- cluster winds termination shocks
- superbubbles/shells
- converging flows
- Up to PeV for clusters, less clear for superbubbles
- Steady emission in wind-dominated phase, intermittent in SNdominated phase
- Reproduces observations if good confinement

- Introduction
- The coming of age of gamma-ray astronomy
 - Sources
 - Diffuse emission
 - Highlights on recent advances
 - Pulsar halos
 - Star-forming regions
 - VHE emission from gamma-ray bursts
- Revolutions
 - Multimessenger astronomy with gamma rays
 - The PeV frontier
- Future prospects

GRBs at VHE

- Long hunt for GRB afterglow
 - relativistic shock acceleration in its simplest realisation
 - likely SSC (beyond synchrotron burnoff): constraints on downstream conditions
- 4 (6) detections since 2019

GRB 190829A

- $z = 0.08 \rightarrow no EBL$ uncertainties
- Klein-Nishina suppression + photon-photon absorption → one zone SSC scenario challenged
- extend synchrotron beyond burnout limit?
- few % of accelerated e + rapid decay of B in reverse shock→ SSC scenario viable from radio to TeV
- alternative explanations: blast wave
 + pair enriched shell, magnetar ...

- Introduction
- The coming of age of gamma-ray astronomy
 - Sources
 - Diffuse emission
 - Highlights on recent advances
 - Pulsar halos
 - Star-forming regions
 - VHE emission from gamma-ray bursts
- Revolutions
 - Multimessenger astronomy with gamma rays
 - The PeV frontier
- Future prospects

Multimessenger astronomy with gamma rays

• Firsts

- GW 170817 (LIGO-Virgo) / GRB 170817A (Fermi/GBM & INTEGRAL/SPI)
- IC 170922A (IceCube) and flare in blazar TXS 0506+056 (Fermi-LAT, MAGIC)
- See review by F. Oikonomou for neutrinos

GW 170817: implications

- fractional GW/photon speed difference -3 × 10⁻¹⁵ $\leq \Delta v/v_{photon} \leq 7 \times 10^{-16}$
- improvement of a few to 10 on minimal Lorentz invariance violation scenarios
- $\Delta t_{decay}/t_{delay} \sim 1$: internal shock with small difference in shells γ or external shock with $\gamma \sim 300$
- Equation of state of neutron star matter
- Dimness of the GRB → engine structure and viewing geometry

- Introduction
- The coming of age of gamma-ray astronomy
 - Sources
 - Diffuse emission
 - Highlights on recent advances
 - Pulsar halos
 - Star-forming regions
 - VHE emission from gamma-ray bursts
- Revolutions
 - Multimessenger astronomy with gamma rays
 - The PeV frontier
- Future prospects

The hunt for PeVatrons

H.E.S.S. collab. (2018) A&A 612 A6

- Difficult to accelerate particles to PeV in the Milky Way
- SNRs challenged
 - observations: steep spectra, cutoffs
 - theory: maximum energy < PeV with rare exceptions
- Was generally believed
 - leptonic accelerators cannot produce effectively > 100 TeV gamma rays due to Klein-Nishina suppression
 - very rare gamma-ray sources > 100 TeV will pinpoint sources of CR nuclei in the Galaxy

A wealth of UHE sources

- Technological advantage of LHAASO: underground µ detectors
- Maximum photon energies 200 TeV-1.4 PeV
- Few spectral measurements: cutoff region?

Could UHE sources be leptonic?

Maximum photon energy mostly consistent with limit from pulsar potential drop

 10^{4}

Emission > 100 TeV can be expected if energy losses dominated by IC (intense radiation fields)

- Introduction
- The coming of age of gamma-ray astronomy
 - Sources
 - Diffuse emission
 - Highlights on recent advances
 - Pulsar halos
 - Star-forming regions
 - VHE emission from gamma-ray bursts
- Revolutions
 - Multimessenger astronomy with gamma rays
 - The PeV frontier
- Future prospects

Current instruments

Upcoming instruments

COSI SMEX

511 keV positron annihilation map Zoglauer+ 2021 arXiv:2102.13158

- Germanium cross-strip detectors
- Superpressure balloon →
 SMEX mission scheduled
 for launch in 2025
- Imaging + spectroscory + polarimetry
 - positron origin
 - element formation
 - polarization in PW AGNs, GRBs, ...

CTA

- Two arrays (N: La Palma, Spain, S: Paranal, Chile)
- > 60 Cherenkov telescopes optimised for different energy ranges
 CLA cherenkov telescope array
- Construction expected to start in 2023 and last 5 years

Upcoming instruments

Instrument concepts

L.Tibaldo

37 of 38