THEORIST'S TOOLS FOR PRECISION PHYSICS

Jort Sinninghe Damsté, *University of Amsterdam*

Nikhef Jamboree, Amsterdam, December 16-17 2019

- Discoveries are generally made by comparison: test your hypothesis
- In particle physics we compare experimental data to theoretical predictions

- Discoveries are generally made by comparison: test your hypothesis
- In particle physics we compare experimental data to theoretical predictions

- Discoveries are generally made by comparison: test your hypothesis
- In particle physics we compare experimental data to theoretical predictions

- Discoveries are generally made by comparison: test your hypothesis
- In particle physics we compare experimental data to theoretical predictions

- Discoveries are generally made by comparison: test your hypothesis
- In particle physics we compare experimental data to theoretical predictions

- Discoveries are generally made by comparison: test your hypothesis
- In particle physics we compare experimental data to theoretical predictions

- Discoveries are generally made by comparison: test your hypothesis
- In particle physics we compare experimental data to theoretical predictions

- Discoveries are generally made by comparison: test your hypothesis
- In particle physics we compare experimental data to theoretical predictions

Bottom line: we need precise measurements and predictions!

- Discoveries are generally made by comparison: test your hypothesis
- In particle physics we compare experimental data to theoretical predictions

- Bottom line: we need precise measurements and predictions!
- What are the tools at the theorist's disposal to achieve this?

Our first method of choice: perturbation theory

• Corrections are typically increasingly small since $\alpha_s \sim 0.1$

- Corrections are typically increasingly small since $\alpha_s \sim 0.1$
- **Example:** single Higgs production

- Corrections are typically increasingly small since $\alpha_s \sim 0.1$
- **Example:** single Higgs production
 - 1. Great convergence of series

- Corrections are typically increasingly small since $\alpha_s \sim 0.1$
- Example: single Higgs production
 - 1. Great convergence of series
 - 2. Very precise prediction at N3LO

▶ Higher order corrections contain *logarithmic* terms

Higher order corrections contain *logarithmic* terms

Spoils perturbative series in kinematic limits where these logarithms are large

▶ Higher order corrections contain *logarithmic* terms

Spoils perturbative series in kinematic limits where these logarithms are large

Higher order corrections contain *logarithmic* terms

Spoils perturbative series in kinematic limits where these logarithms are large

Solution: the (re)summation of these logarithms to all orders

$$\sigma \sim \exp\left[\alpha_s L^2\right]$$

▶ Higher order corrections contain *logarithmic* terms

Spoils perturbative series in kinematic limits where these logarithms are large

Solution: the (re)summation of these logarithms to all orders

$$\sigma \sim \exp\left[\alpha_s L^2\right]$$

Higher order corrections contain *logarithmic* terms

Spoils perturbative series in kinematic limits where these logarithms are large

Solution: the (re)summation of these logarithms to all orders

$$\sigma \sim \exp\left[\alpha_s L^2\right]$$

How do these logarithms appear?

Higher order corrections involve real emission diagrams as well

Large logarithms arise when there is *just enough energy* to produce the LO final state: forces additional radiation to be low-energetic

- Large logarithms arise when there is just enough energy to produce the LO final state: forces additional radiation to be low-energetic
- Our small kinematic variable is $x = \frac{E}{\sqrt{s}}$

- Large logarithms arise when there is just enough energy to produce the LO final state: forces additional radiation to be low-energetic
- Our small kinematic variable is $x = \frac{E}{\sqrt{s}}$
- We can classify the resulting logarithms at order α_s^n :

- Large logarithms arise when there is *just enough energy* to produce the LO final state: forces additional radiation to be low-energetic
- Our small kinematic variable is $x = \frac{E}{\sqrt{s}}$
- We can classify the resulting logarithms at order α_s^n :

Leading power
$$\frac{\log^{2n-1}(x)}{x} \quad \frac{\log^{2n-2}(x)}{x} \quad \cdots$$

Higher order corrections involve real emission diagrams as well

- Large logarithms arise when there is *just enough energy* to produce the LO final state: forces additional radiation to be low-energetic
- Our small kinematic variable is $x = \frac{E}{\sqrt{s}}$
- We can classify the resulting logarithms at order α_s^n :

Leading power

$$\frac{\log^{2n-1}(x)}{x} \qquad \frac{\log^{2n-2}(x)}{x} \qquad \cdots$$

- Large logarithms arise when there is just enough energy to produce the LO final state: forces additional radiation to be low-energetic
- Our small kinematic variable is $x = \frac{E}{\sqrt{s}}$
- We can classify the resulting logarithms at order α_s^n :

Leading power $\frac{\log^{2n-1}(x)}{x}$ $\frac{\log^{2n-2}(x)}{x}$...

Next-to-leading power $\log^{2n-1}(x)$ $\log^{2n-2}(x)$...

LL resummation in Drell-Yan and single Higgs production:

[N. Bahjat-Abbas, D. Bonocore, JSD, E. Laenen, L. Magnea, L. Vernazza, C.D. White; JHEP 11 (2019) 002]

LL resummation in Drell-Yan and single Higgs production:

[N. Bahjat-Abbas, D. Bonocore, JSD, E. Laenen, L. Magnea, L. Vernazza, C.D. White; JHEP 11 (2019) 002]

LL resummation in Drell-Yan and single Higgs production:

LL resummation in Drell-Yan and single Higgs production:

Numerical effects are sizeable for invariant mass distribution in DY:

[M. van Beekveld, E. Laenen, L. Vernazza, JSD; in preparation]

Perturbation theory may provide us with excellent predictions

- Perturbation theory may provide us with excellent predictions
- Resummation is the required tool when large logarithms appear

- Perturbation theory may provide us with excellent predictions
- Resummation is the required tool when large logarithms appear

LL

NLL

Leading power	$\frac{\log^{2n-1}(x)}{x}$	$\frac{\log^{2n-2}(x)}{x}$	• • •
Next-to-leading power	$\log^{2n-1}(x)$	$\log^{2n-2}(x)$	• • •

- Perturbation theory may provide us with excellent predictions
- Resummation is the required tool when large logarithms appear

	LL	INLL	
Leading power	$\frac{\log^{2n-1}(x)}{x}$	$\frac{\log^{2n-2}(x)}{x}$	

1.1

Next-to-leading power

$$\log^{2n-1}(x)$$

$$\log^{2n-2}(x)$$

NI I

- Perturbation theory may provide us with excellent predictions
- Resummation is the required tool when large logarithms appear

	LL	NLL	
Leading power	$\frac{\log^{2n-1}(x)}{x}$	$\frac{\log^{2n-2}(x)}{x}$	
Next-to-leading power	$\log^{2n-1}(x)$	$\log^{2n-2}(x)$	

LL resummation at NLP is numerically important

- Perturbation theory may provide us with excellent predictions
- Resummation is the required tool when large logarithms appear

- LL resummation at NLP is numerically important
- Motivates further study of sub-leading logarithms at NLP

- Perturbation theory may provide us with excellent predictions
- Resummation is the required tool when large logarithms appear

- LL resummation at NLP is numerically important
- Motivates further study of sub-leading logarithms at NLP

The quest for precision continues...