
AdV Phase Cameras, LVC meeting 5 Sep 2018  

Virgo Phase Camera

Martin van Beuzekom, Matteo Tacca, 
Daniela Pascucci, Yuefan Guo, 

Laura van der Schaaf, Jo van den Brand

Nikhef Jamboree
Amsterdam, 16th - 17th December 2019



cavity mirrors

beamsplitter

power 
recycling 

mirrorlaser

photodiode

Why a phase camera?

aid 
commissioning

2

Advanced Virgo has a marginally stable 
Power Recycling Cavity

Higher Order Modes (HOM) can resonate and 
complicate the cavity control

Phase cameras provide phase

and amplitude images

Hermite-Gaussian modes
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The principle behind Phase Camera
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HOMs and thermal effects
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The input power to the interferometer is 
increased from about 18 W to about 26 W 
(and will be further increased).

This makes mirrors thermally expand and 
changes the mode matching.

Thermal effects are a source of HOMs.
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Outlook

• Understand the data: 

➡  what do the phase images 

represent?

• Use the data:

➡ provide feedback to correct the 

thermal effects

• Producing 3 phase cameras for 

LIGO 

(in collaboration with the University 

of Birmingham)
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What are these?



Backup slides
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Phase Camera and 
Thermal Compensation 

2 main phase cameras, 
at symmetric and asymmetric port
• Probe field in Power Recycling via 
     Pick Off Plate (POP)

• Object plane is POP
• Detection Beam (B1p) before OMC

• Object plane is Signal Recycling Mirror
      (currently only a lens)

• TCS actuators:
• Ring Heaters (RH)
• CO2 laser on Compensation Plate  

POP
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Basic principle 
scanning Phase 

Test beam 
(carrier + sidebands)

Reference beam 
(Frequency shifted by fH) Pin-hole 

photo diode

Scanner

BS

EOM

phase 
modulation

 fH

fs

signal  
processing

beam  
telescope

beam with beat notes  
(fH, fH +/- fs) 

• Upper and lower sidebands (USB/LSB) are at (slightly) different optical 
frequencies

• Access each sideband separately by mixing it with a 80 MHz frequency shifted 
beam

• Beat signal with fH, and fH +/- fs 

AOM
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Phase Camera 
initial requirements

• Images with > 100 x 100 points, covering 5 x beam 
size

• we use  128 x 128 measurement points
• Image LSB and USB separately, i,e. use 

heterodyne
• 11 demodulation frequencies (including 80 MHz 

heterodyne)
• highest demodulation freq. is 131 + 80 = 211 MHz
• simultaneous acquisition to allow common ‘noise’ 

subtraction
• Sensitivity for deformations better than 2 nm:  

phase resolution ~ λ / 500 
• within 1 beam diameter

• Image frequency at least 1 Hz (higher image rate if 
possible)

• (Least possible electronics near the optical bench)
• (Beam powers not well defined at design time)
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Heterodyne 
detection

• Measured E-field of ITF field (A(x)) scales with amplitude of reference beam (B)
• More power in the reference beam helps to overcome electronics noise; 

ultimately SNR is limited by shot noise

Eitf (x) = A(x)ei (ωc+ωs)+iφs(x) Eref = Be
i (ωc+ωh )+iφh

Esum(x) =
Eitf (x)
2

+
iEref

2
I pd (x) = Esum(x)Esum

* (x) = A2 (x) + B2 + 2 A(x) B cos((ωh+ −ωs)t +φh +φs(x))

DC Amplitude phase

At beam splitter: Ipd

Eitf

Eref
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Intermezzo: 1 beam 
versus 2 beam 

• More ref. beam power, hence  
higher SNR

• Correction needed for geometrical 
effects due to different beam 
angles

• but not for phase differences:
   sideband-carrier,  LSB-USB

Current configuration in AdV

• Lower ref. beam power, lower 
SNR

• No correction for geometrical 
effects

• Calibration of ref. beam 
wavefront
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Electronics chain

InGaAs diode
50 µm diameter 

10kΩ

ADC
20 m 15x FPGA 

digital  
demodulation TOLM  

network

LAPP 
ADC

14 bit  
500 MS/s 

4 channels

20kΩ

700 MHz BW
dynamic range 1 Vpp
en_out = 46 nV/rt(Hz)

RF

DC

Xilinx VC707 board 
Virtex7 FPGA
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PhotoReceiver 

• High transimpedance (10 kΩ)
• Dominant electronics noise source
• Small aperture, hence relatively 

little light
• only shot noise limited at beam center  PD Diaphragm:

• 1st version plastic
• OK scattering wise, but cannot 

handle high power flashes
• 2nd version: black anodised Alu.

• not OK scattering wise
• 3rd version Vantablack coated

• results look promising
• diaphragms hard to handle 

because coating is very fragile 
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Frequency 
response correction

• Calibration of frequency response needed for sideband (un)balance 
measurement

• Upper and lower sidebands are far apart, e.g. 56 MHz SB, distance is 
112 MHz

• Frequency response of amplifiers is not flat 
• But also attenuation in 20 m long (high quality) cable is not negligible
• Dependence can be calibrated, using dedicated measurements

80-56 80+56
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Digital 
demodulation

ADC

ADC

fh

f1..f5

Hann* 
cosine 
RAM

Hann* 
sine 
RAM

PD in atan

I

Q

atan

Q

I

Δφcntr 
0..N-1

sample clock 
500 MHz

power

to DAQ

11x

ADC

FPGA

electrical 
reference  

signals
power



16

Signal 
processing

• For each image point we calculate the I and Q:

• Sum acts as filter (FIR with N equal coefficients)
• Electrical reference frequencies (sideband and heterodyne) sampled with 

same clock as PD signal
• We measure the phase difference of PD signal w.r.t. the electrical 

reference
• Demodulation frequencies are stored in tables (RAM)
• Window function, currently Hann, stored in same table, hence easily 

adaptable

I = PD(i)*Hann(i)*Cos
i=0

N

∑ 2π ifsb / fs( )

Q= PD(i)*Hann(i)*Sin
i=0

N

∑ 2π ifsb / fs( )

ϕ = tan−1 Q / I( )

A= Q2 + I 2
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Frequency resolution 
and acquisition time

• Scanning camera: image points are measured sequentially
• Measurement time per point determines frequency resolution and SNR
• Max. time is set by 1 Hz image frequency, min. time by frequency resolution 

• max. Ns = 30517 samples / image point
• Sampling frequency fs = 500 MS/s 
• 128 x 128 image points in 1 sec  

• min. Ns =  957 samples / image point
• FFT frequency spacing: δf = fs / Ns 

• sideband distance:  ΔF = 2.09 MHz 
• and requirement δf < ΔF/4

• PC can do 30 images/s from freq. resolution p.o.v.
• Default: 16k (2^14) samples / image point 

• 0.54 sec for a complete image

N x δf

Hann window      

Rectangular window

min default
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Scanner 
• Scanning pattern is an Archimedean spiral: minimize vibrations & better accuracy
• Scanner moves continuously, hence measures a small spatial region, not a pure point
• Actual position measured with strain gauges
• With a max angular frequency of 1 kHz, one could take ~ 16 images / s

• however angular range drops drastically -> need a longer distance to PD to compensate

m
ea

su
re

d 
de
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ct
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n

scanner response
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Relative phase 
measurement

• We take the relative phase of sideband and heterodyne, or between sidebands
• Main reason: remove common phase noise due to e.g. optical fiber in AOM path
• Additional benefit: no correction needed for wave front curvature due to scanning angle 

• Correction would be needed for absolute phase measurement as scanning angle introduces path 
length difference in one of the two beams 

• Could in principle be corrected for, but correction is huge (tens of radians) and can easily lead to 
inaccuracies
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Phase 
measurement error

• phase error obtained via error propagation of I/Q signals  

• If                        then                                

• Once shot noise limited (center of image)      depends on A

φ = arctan Q
I( ) A= Q2 + I 2

σφ = ( ∂φ∂Q)
2σ 2

Q + (
∂φ
∂I )

2σ 2
I

∂φ
∂Q =

I
A2

∂φ
∂I =

−Q
A2

σ I =σQ =σ

with

I

Q A

σ A

σϕ =
σ
A

=
σA

A
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Schematic diagram 
of prototype set-up

• With lenses (not shown) we shape the beams
• Signal and reference beam have a flat wavefront at the PD position
• Aberration beam is curved at the PD position

reference
beam

signal 
beam

aberration 
beam
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Intensity images

aberration beam blocked 
(only beams with flat wavefront)

signal beam blocked 
hence no sidebands

Interference of two TEM00 with 
different phases 
(sidebands have flat wavefront)
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Corresponding 
phase image

Aberration beam blocked 
Only flat wavefronts -> constant phase 

Signal beam (after EOM) blocked
hence no sidebands

Only carrier in aberration 
beam has curved 
wavefront 
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Phase resolution

• Using differential phase images: LSB-carrier, USB-carrier
• Phase resolution determined from standard deviation of 
    consecutive images
• Phase resolution is a function of beam intensity

phase noise vs amplitude

phase noise vs expectation

x [mm]

y 
[m

m
]

phase versus vertical position (at x=0) 


