

FitToT 4ns

2019-11-21 Bouke Jung (<u>bjung@nikhef.nl</u>) KM3NeT collaboration meeting

PMT calibration

Efficiency-related

- Relative PMT efficiency

 = (Absolute QE) * (Collection eff.) * ...
- Gain
- Gainspread

Time-related

- PMT Time offset
- Transit time spread (TTS)

PMT calibration

Efficiency-related

- Relative PMT efficiency

 = (Absolute QE) * (Collection eff.) * ...
- Gain
- Gainspread

Via time-over-threshold (ToT)

Gain-calibration

- Analysis chain
 - JCalibrateToT
 - (JMergeCalibrateToT)
 - JFitToT
- Fitting procedure
 - 1. Select fit range
 - 2. For each ToT in range, determine:
 - i. npe(ToT)
 - ii. P(npe, G, GS)

$$R = W \cdot P(\text{npe}) \cdot \frac{d\text{npe}}{d\text{ToT}}$$

- iii. D npe / d ToT
- 3. Optimize fit for gain and gain-spread

809526097.8

Gain-calibration

- Analysis chain
 - JCalibrateToT
 - (JMergeCalibrateToT)
 - JFitToT

• Fitting procedure

- 1. Select fit range
- 2. For each ToT in range, determine:
 - i. npe(ToT)
 - ii. P(npe,G,GS)

$$R = W \cdot P(\text{npe}) \cdot \frac{d\text{npe}}{d\text{ToT}}$$

- iii. D npe / d ToT
- 3. Optimize fit for gain and gain-spread
- **Relation ToT vs npe** based on simple Jpp model
 - Assume pulse is Gaus with exp. tail
 - ToT will increase logarithmically until saturation point
 - Linear increase afterwards

An issue

- Fit range is bounded at 10 ns
 - Prevents inclusion of **bump around 4 ns**
- May lead to incorrect calibration in PMTs with anomalously low gain
- Propagates into 40K calibration
 - Too high QE
 - Low t0

. . .

•

An issue

808964883.23

- Fit range is bounded at 10 ns
 - Prevents inclusion of **bump around 4 ns**
- May lead to incorrect calibration in PMTs with anomalously low gain
- Propagates into 40K calibration
 - Too high QE
 - Low t0

. . .

- •
- Solutions
 - 1. HV tuning
 - 2. Incorporate 4ns-bump

Cause

- Noise band which pushes photon hits over the threshold
- 3 figures to keep in mind:
 - 1. Pulse-diagram

Cause

- Noise band which pushes photon hits over the threshold
- 3 figures to keep in mind:
 - 1. Pulse-diagram
 - 2. ToT-diagram

- Noise band which pushes photon hits over the threshold
- 3 figures to keep in mind:
 - 1. Pulse-diagram
 - 2. ToT-diagram
 - 3. Charge-diagram

Model adjustment

- Include Gaussian to account for the noise-bump
- Currently use:
 - Mean @ 4.5 ns
 - Sigma @ 2 ns
- Fix height using charge-fraction in noise-band

$$f_{\text{noiseband}} = \frac{1}{N} \int_{Q_{th}-Q_n}^{Q_{th}} Q(\text{ToT}, \mathbf{G}, \mathbf{GS}) dQ \qquad \qquad N = \int_{Q_{th}-Q_n}^{\infty} Q(\text{ToT}, \mathbf{G}, \mathbf{GS}) dQ$$

• Similarly, weigh Jpp-model fit according to charge-fraction outside noise-band

Preliminary results

Preliminary results

Run 5379

Run 6018

Discussion

Status:

- Already works quite well for low-gain PMTs!
- Noise-/threshold-values sub-optimal for PMTs with normal gain

To do:

- Evaluate effect on K40-fits
- Find optimal noise- and threshold-values
- Find optimal mean and sigma
- Account for additional bump around 12 ns