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Monte Carlo Simulations are increasingly important.
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= MC event generation is needed for signal and background predictions.
= The required CPU time will increase in the next years.
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Monte Carlo Simulations are increasingly important.
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The bottlenecks for evaluating large final state multiplicities are

@ a slow evaluation of the matrix element

@ a low unweighting efficiency
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The bottlenecks for evaluating large final state multiplicities are

e matrix element

@ a low unweighting efficiency

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows April 9, 2020 3/34



i-flow: Numerical Integration and Event Generation with
Normalizing Flows

Part I:  Monte Carlo Integration and
Existing Algorithms

XA

Part Il Machine Learning

and Normalizing Flows

X8

Part [ll:  i-flow and its Applications 18

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows April 9, 2020 4 /34



I: There are two problems to be solved. . .

(%)

dO’(p,‘, 191'7 (Pl)

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows

April 9, 2020

5/34



m I: There are two problems to be solved. . .

2 fx) = F= / f(x) d°x

do(pi,¥i, i) = UZ/dU(Pi,ﬂi7<Pi), D = 3nfinal — 4 + x
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m I: There are two problems to be solved. . .

2 fx) = F= / f(x) d°x

dU(Piﬂ(}i:‘Pi) = g = /dU(PiaﬂiaQ@i)y D= 3nfina| —44x

[2) Given a distribution 7(x), how can we sample according to it? ]
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|: ...but they are closely related.

@ Starting from a pdf, ...
@ ...we can integrate it and find its cdf, ...

@ ...to finally use its inverse to transform a uniform distribution.
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i

|: ...but they are closely related.

@ Starting from a pdf, ...
@ ...we can integrate it and find its cdf, ...

@ ...to finally use its inverse to transform a uniform distribution.

= We need a fast and effective numerical integration!
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|: Importance Sampling is very efficient for
high-dimensional integration.

1
1
/0 f(x) dx M, N z’: f(x) Xj ... uniform

[ e fx)
= | S5 atoax . NZ—) .. q(x)

q(X) importance sampling
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high-dimensional integration.

m |: Importance Sampling is very efficient for

1
1
/0 f(x) dx M, N z’: f(x) X; ... uniform

(G MC 1)
_/o 9 NZ (xi) '

q(X) importance sampling

.. q(x)

We therefore have to find a g(x) that
@ approximates the shape of f(x).

@ is “easy” enough such that we can sample from its inverse cdf.
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I: The unweighting efficiency measures the quality
of the approximation q(x).

—

o If g(x) = const., each event x; would require a weight of f(x;) to
reproduce the distribution of £(x). = "Weighted Events"

o If g(x) o f(x), all events would have the same weight as the
distribution reproduces f(x) directly. = “Unweighted Events”
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|: The unweighting efficiency measures the quality
of the approximation q(x).

o If g(x) = const., each event x; would require a weight of f(x;) to
reproduce the distribution of £(x). = "Weighted Events"

o If g(x) o f(x), all events would have the same weight as the
distribution reproduces f(x) directly. = “Unweighted Events"

@ To unweight, we need to accept/reject each event with probability
%. The resulting set of kept events is unweighted and reproduces
the shape of f(x).

@ The unweighting efficiency 7 gives the fraction of events that

“survives" this procedure.

__ # accepted events __ meanw H o (k) . f(x)
n= # all events T maxw ' with w; = q(xi) — Fq(xi)"
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A || I: The usual definition of unweighting efficiency is
w unstable if many events are generated.

Problems of the old definition:
@ The maximum grows with the number of
events drawn.

@ If more points are drawn than used in
training, the chance for outliers increases a

lot.

@ Generating smaller subsets doesn’t work,
because we want a globally unweighted set
of events.
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|: The usual definition of unweighting efficiency is
unstable if many events are generated.

Problems of the old definition:
@ The maximum grows with the number of
events drawn.

@ If more points are drawn than used in
training, the chance for outliers increases a
lot.

o Generating smaller subsets doesn't work,
because we want a globally unweighted set
of events.

Our new definition:
@ Assuming we used N events during optimization, draw n/N, events.
@ Now, select m replicas of Nyt events each and find their maximum weight.
o Compute the total maximum as the median of the individual maxima.

@ We expect a few overweight events that can either be discarded or included
with their weights set to wmax (Requiring further control plots!).
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|| I: The VEGAS algorithm is very efficient.

The VEGAS algorithm Peter Lepage 1980
@ assumes the integrand factorizes and bins the 1-dim projection.

@ then adapts the bin edges such that area of each bin is the same.

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows April 9, 2020

10 / 34



|: The VEGAS algorithm is very efficient.

The VEGAS algorithm Peter Lepage 1980

@ assumes the integrand factorizes and bins the 1-dim projection.
@ then adapts the bin edges such that area of each bin is the same.

stratified sampling.

@ It does have problems if the features are { ;
not aligned with the coordinate axes.

@ The current python implementation also uses ( )
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I || I: The Foam algorithm resolves correlations.

The Foam algorithm S. Jadach [physics/0203033]
@ In the exploration phase, the integration domain is consecutively split
into cells.
@ In the generation phase, a cell is chosen at random and a point is
drawn uniformly from within that cell.

— Tﬁ 0

i =

illustrations from ICHEP 2002 slides, S. Jadach
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I: The Foam algorithm resolves correlations.

The Foam algorithm S. Jadach [physics/0203033]
@ In the exploration phase, the integration domain is consecutively split
into cells.
@ In the generation phase, a cell is chosen at random and a point is
drawn uniformly from within that cell.

illustrations from ICHEP 2002 slides, S. Jadach

@ It captures correlations.

o However, within each cell g(x) = const.
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[I: Neural Networks are nonlinear functions,
inspired by the human brain.

Each neuron transforms the input with a weight W and a bias b.

X0

The activation function o makes it nonlinear.

“rectified linear unit (relu)” “leaky relu” “sigmoid”

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows April 9, 2020 13 /34



<” II: There are different approaches to generate
- events with Machine Learning Techniques.

Generate events directly using GANs.
Bendavid [1707.00028]; Otten et al.

[1901.00875]; Hashemi et al. [1901.05
Di Sipio et al. [1903.02433]; Butter
[1907.03764, 1912.08824]; Carrazz.
[1909.01359]; Ahdida et al. [19

X Need existing event sample to
train.

% Results can be biased if not
trained right.

Claudius Krause (Fermilab)

Learn g(x) to improve importance

sampling.

Bendavid [1707.00028];
Klimek/Perelstein [1810.11509];
i-flow [this talk, 2001.05486]

v Insufficient training just yields
high uncertainties, no bias.

v Events are generated from
scratch, no pre-existing set is
needed.

% Resulting set of events still needs
to be unweighted.
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II: There are different approaches to generate
events with Machine Learning Techniques.

Generate events directly using GANs.
Bendavid [1707.00028]; Otten et al.
[1901.00875]; Hashemi et al. [1901.05282];

Di Sipio et al. [1903.02433]; Butter et al.
[1907.03764, 1912.08824]; Carrazza et al.
[1909.01350]; Ahdida et al. [1909.04451]

v Several orders of magnitude
faster.

v Generates unweighted events
directly.

% Need existing event sample to
train.

% Results can be biased if not
trained right.

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows

Learn g(x) to improve importance

sampling.

Bendavid [1707.00028];
Klimek/Perelstein [1810.11509];
i-flow [this talk, 2001.05486]

v Insufficient training just yields
high uncertainties, no bias.

v Events are generated from
scratch, no pre-existing set is
needed.

x Resulting set of events still needs
to be unweighted.
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Il: The Loss function quantifies our goal.

We have different choices:
o Kullback-Leibler (KL) divergence:

Dk = [ p(x)log %dx ~

1
~ N

@ Pearson y? divergence:
X X Xi d
szzf%dx ~ %EZ() -1, x;...q(x)

@ Exponential divergence:
Dexp = [ p(x) Iog( (X)) dx ~ lZmlog(”(x’ )2 ;... q(x)
exp ( N q Xi) q(Xi) P) Joee .

We use the ADAM optimizer for stochastic gradient descent
@ The learning rate for each parameter is adapted separately, but based

on previous iterations.
@ This is effective for sparse and noisy functions.  Kingma/Ba [arXiv:1412.6980]
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II: Using the NN as coordinate transform is
too costly.

We could use the NN as nonlinear coordinate transform:

@ We use a deep NN with ngj,, nodes in the first and last layer to map a
uniformly distributed x to a target g(x).

@ The distribution induced by the map y(x) (=NN) is given by the
Jacobian of the map:

= = &2
q(y) = q(y(x)) = Ox Klimek /Perelstein [arXiv:1810.11509]
Jacobian
y =x* ov| 7t 1
ox 2x
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II: Using the NN as coordinate transform is
too costly.

We could use the NN as nonlinear coordinate transform:

@ We use a deep NN with ngj,, nodes in the first and last layer to map a
uniformly distributed x to a target g(x).

@ The distribution induced by the map y(x) (=NN) is given by the
Jacobian of the map:

— — |9
qa(y) = a(y(x)) = |5 Klimek/Perelstein [arXiv:1810.11509]
Jacobian
y =x° R
ox 2x

= The Jacobian is needed to evaluate the loss and to sample. However, it
scales as O(n%) and is too costly for high-dimensional integrands!
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II: Normalizing Flows are numerically cheaper.

A Normalizing Flow:
@ is a bijective, smooth mapping between two statistical distributions.
@ is composed of a series of easy transformations, the “Coupling Layers”.
@ is still flexible enough to learn complicated distributions.

= The NN does not learn the transformation, but the parameters of a se-
ries of easy transformations.
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II: Normalizing Flows are numerically cheaper.

A Normalizing Flow:

@ is a bijective, smooth mapping between two statistical distributions.

@ is composed of a series of easy transformations, the “Coupling Layers”.

@ is still flexible enough to learn complicated distributions.

= The NN does not learn the transformation, but the parameters of a se-
ries of easy transformations.

@ The idea was introduced as “Nonlinear Independent Component
Estimation” (NICE) in Dinh et al. [arXiv:1410.8516].

o In Rezende/Mohamed [arxiv:1505.05770], Normalizing Flows were first
discussed with planar and radial flows.

@ We follow the ideas of Miiller et al. [arXiv:1808.03856],
but with the modifications of Durkan et al. [arXiv:1906.04032].
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lI: The Coupling Layer is the fundamental
Building Block

XA

X @@ Y permutation '—)
Xg —C(xg; m(xa))
forward: The C are numerically cheap, invertible, and
YA = Xa separable in xg ;.

yB,i = C(xg,i; m(xa))

inverse:
XA = YA

xg,i = C(yg,ii m(xa))

Jacobian:
8}/ 1 g_c 8C(XB i m(xA))
Ox 0 7 Oxg, i
= O(n)

Claudius Krause (Fermilab)

i-flow: Event Generation with Normalizing Flows April 9, 2020

18 / 34



i-flow: Numerical Integration and Event Generation with
Normalizing Flows

Part I:  Monte Carlo Integration and
Existing Algorithms

XA

Part Il Machine Learning

and Normalizing Flows

X8

Part [ll:  i-flow and its Applications 18

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows April 9, 2020 19 / 34



I1l: Introducing: i-flow.

i-flow C. Gao, J. Isaacson, CK [arXiv:2001.05486]
o implements Normalizing Flows in python using TensorFlow 2.0.

@ is available at gitlab.com/i-flow/i-flow.
The user can choose different

@ transformations in the Coupling Layer,
@ Neural Network architectures,

@ Loss functions,

@ settings for hyperparameters.
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I1l: Introducing: i-flow.

i-flow C. Gao, J. Isaacson, CK [arXiv:2001.05486]
o implements Normalizing Flows in python using TensorFlow 2.0.

@ is available at gitlab.com/i-flow/i-flow.
The user can choose different

@ transformations in the Coupling Layer,
@ Neural Network architectures,

@ Loss functions,

@ settings for hyperparameters.

How it works:

— - 5

- X)) —

T—{ apply gradient descent '—‘

i-flow
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IlI: The Coupling Function is a piecewise
approximation to the cdf.

piecewise linear coupling function: Miller et al. [arXiv:1808.03856]

pdf cdf

The NN predicts the pdf bin heights Q;.
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IlI: The Coupling Function is a piecewise
approximation to the cdf.

piecewise linear coupling function:

Miiller et al. [arXiv:1808.03856]

b—1
pdf odf C= g Qi + aQp
k=1
_ x—(b—1)w
@= w
9C) _q%
= i
The NN predicts the pdf bin heights Q;. Oxg
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IIl: The Coupling Function is a piecewise
approximation to the cdf.

piecewise linear coupling function: Miller et al. [arXiv:1808.03856]

b—1
pdf odf C= Z Qi + aQp
k=1
@ = x—(bw—l)w
oC Qs
el

The NN predicts the pdf bin heights Q;.

rational quadratic spline coupling function: Durkan et al. [arXiv:1906.04032]

Gregory/Delbourgo [IMA Journal of Numerical Analysis, '82]

cdf

3 202 + ara + ag @ still rather easy

" bha? + bia+ by @ more flexible

The NN predicts the cdf bin widths, heights, and derivatives that go in a;&b;.
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I1l: There are many hyperparameters to adjust.

Available Architectures: Miiller et al. [arXiv:1808.03856]
“Fully Connected” Neural Net (NN):  “U-shaped” Neural Net (Unet):

Tput Layer

Output Layer
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I1l: There are many hyperparameters to adjust.

Available Architectures: Miiller et al. [arXiv:1808.03856]
“Fully Connected” Neural Net (NN):  “U-shaped” Neural Net (Unet):

Tnput Layer

Output Layer

There are additional hyperparameters that can be adjusted:
@ learning schedule:  schedule function (const., exponential, .. .), initial
learning rate, decay rate and step size, ...

@ training: which loss function, # epochs, # samples per epoch

@ normalizing flow specific: ~ # (input/output) bins, how to split dims
inside CL, # CLs, which function in the CLs
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I1l: We need O(log n) Coupling Layers.

How many Coupling Layers do we need?

@ Enough to learn all correlations between the variables.
@ As few as possible to have a fast code.

@ This depends on the applied permutations and the xa4 — xg-splitting:
(pppttt)<>(tttppp)  vs.  (pppptt)<>(ppttpp)<«>(ttpppp)

@ More pass-through dimensions (p) means more points required for
accurate loss.

@ Fewer pass-through dimensions means more CLs needed.

o For #p =~ #t, we can prove: ‘4 < #CLs < 2[logy Nyim | ‘
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[Il: The 4-d Camel function illustrates the
learning of i-flow.

Our test function: 2 Gaussian peaks, randomly placed in a 4d space.

Before training:

Target Distribution:

loss = 3.197938e+00

Dim VEGAS Foam i-flow true value
2 0.98112(89) 0.08169(5) 0.98171(4) 0.98166
4 | 0.96378(222) 0.96356(30) 0.96389(25) | 0.963657
8 | 0.87752(759) | 0.93007(142) 0.92788(44) | 0.928635
16 | 0.43139(25) | 0.96498(17337) | 0.86153(104) | 0.862363
Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows April 9, 2020
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[Il: The 4-d Camel function illustrates the
learning of i-flow.

Our test function: 2 Gaussian peaks, randomly placed in a 4d space.
After 5 epochs:

Target Distribution:

loss = 2.855757e+00

T

NT) Shpr

R
ek

= =
E& eod

Dim VEGAS Foam i-flow true value
2 0.98112(89) 0.08169(5) 0.98171(4) 0.98166
4 | 0.96378(222) 0.96356(30) 0.96389(25) | 0.963657
8 | 0.87752(759) | 0.93007(142) 0.92788(44) | 0.928635
16 | 0.43139(25) | 0.96498(17337) | 0.86153(104) | 0.862363
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[Il: The 4-d Camel function illustrates the
learning of i-flow.

Our test function: 2 Gaussian peaks, randomly placed in a 4d space.

Target Distribution:

After 10 epochs:

loss = 2.432073e+00

o L
N q samosts
: ¢<\ /.u \J‘u 71
‘‘‘‘‘‘‘‘‘‘ i@ e .
Dim VEGAS Foam i-flow true value
2 0.98112(89) 0.08169(5) 0.98171(4) 0.98166
4 | 0.96378(222) 0.96356(30) 0.96389(25) | 0.963657
8 | 0.87752(759) | 0.93007(142) 0.92788(44) | 0.928635
16 | 0.43139(25) | 0.96498(17337) | 0.86153(104) | 0.862363
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[Il: The 4-d Camel function illustrates the
learning of i-flow.

(Our test function: 2 Gaussian peaks, randomly placed in a 4d space. )
Target Distribution: After 25 epochs:
B
E)< -LLJJ ™
L)
rob®. )
eveed |
- v
e 1
Dim VEGAS Foam i-flow true value
2 0.98112(89) 0.98169(5) 0.98171(4) 0.98166
4 | 0.96378(222) 0.96356(30) 0.96389(25) | 0.963657
8 | 0.87752(759) | 0.93007(142) 0.92788(44) | 0.928635
16 | 0.43139(25) | 0.96498(17337) | 0.86153(104) | 0.862363
- v
April 9, 2020 24 /34
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[Il: The 4-d Camel function illustrates the
learning of i-flow.

Our test function: 2 Gaussian peaks, randomly placed in a 4d space.
After 100 epochs:

loss = 1.712694e.01

Target Distribution:

D
Dim VEGAS Foam i-flow true value
2 0.98112(89) 0.98169(5) 0.98171(4) 0.98166
4 0.96378(222) 0.96356(30) 0.96389(25) 0.963657
8 0.87752(759) 0.93007(142) 0.92788(44) 0.928635
16 0.43139(25) 0.96498(17337) | 0.86153(104) 0.862363
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[Il: The 4-d Camel function illustrates the
learning of i-flow.

Our test function: 2 Gaussian peaks, randomly placed in a 4d space.
After 200 epochs

Target Distribution:

®

jL

© e

= 2.640339¢-02

®EB®a “ai

Dim VEGAS Foam i-flow true value
2 0.98112(89) 0.98169(5) 0.98171(4) 0.98166
4 0.96378(222) 0.96356(30) 0.96389(25) 0.963657
8 0.87752(759) 0.93007(142) 0.92788(44) 0.928635
16 0.43139(25) 0.96498(17337) | 0.86153(104) 0.862363
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[Il: The 4-d Camel function illustrates the
learning of i-flow.

Our test function: 2 Gaussian peaks, randomly placed in a 4d space.

After 200 epochs

Target Distribution:

= 2.640339¢-02

o%ﬁ Ul

DT “ai

Dim VEGAS Foam i-flow
2 —0.61 0.6 1.25
4 0.06 —0.32 0.93
8 —6.73 1.01 —-1.72
16 —1723.89 0.59 —0.8
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[1l: i-flow also learns hard, non-trivial cuts.

Our test function: a 2d ring function.
Target Distribution: Before training:

o Final cut efficiency: 89 % Untrained efficiency: 51 %
o Integral: 0.510508 Estimated integral: 0.51040 £ 0.00018
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[1l: i-flow also learns hard, non-trivial cuts.

Our test function: a 2d ring function.
Target Distribution: After 10 epochs:

o Final cut efficiency: 89 % Untrained efficiency: 51 %
o Integral: 0.510508 Estimated integral: 0.51040 £ 0.00018
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[1l: i-flow also learns hard, non-trivial cuts.

Our test function: a 2d ring function.
Target Distribution: After 20 epochs:

o Final cut efficiency: 89 % Untrained efficiency: 51 %
o Integral: 0.510508 Estimated integral: 0.51040 £ 0.00018

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows April 9, 2020 25 /34



[1l: i-flow also learns hard, non-trivial cuts.

Our test function: a 2d ring function.
Target Distribution: After 50 epochs:

o Final cut efficiency: 89 % Untrained efficiency: 51 %
o Integral: 0.510508 Estimated integral: 0.51040 £ 0.00018
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[1l: i-flow also learns hard, non-trivial cuts.

Our test function: a 2d ring function.
Target Distribution: After 100 epochs:

o Final cut efficiency: 89 % Untrained efficiency: 51 %
o Integral: 0.510508 Estimated integral: 0.51040 £ 0.00018
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[1l: i-flow also learns hard, non-trivial cuts.

Our test function: a 2d ring function.
Target Distribution: After 200 epochs:

o Final cut efficiency: 89 % Untrained efficiency: 51 %
o Integral: 0.510508 Estimated integral: 0.51040 £ 0.00018
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[1l: i-flow also learns hard, non-trivial cuts.

Our test function: a 2d ring function.
Target Distribution: Final Distribution (500 epochs):

o Final cut efficiency: 89 % Untrained efficiency: 51 %
o Integral: 0.510508 Estimated integral: 0.51040 + 0.00018
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[Il: Sherpa needs a high-dimensional integrator.

(Sherpa is a Monte Carlo event generator for the Simulation of High-Energy )
Reactions of PArticles. We use Sherpa to

@ compute the matrix element of the process.

@ map the unit-hypercube of our integration domain to momenta and
angles. To improve efficiency, Sherpa uses a recursive multichannel
algorithm.

= Ndim = 3Nfina) — 4+ Ngina — 1
—_——  —

kinematics multichannel

@ However, the COMIX++ ME-generator uses color-sampling, so we should
also integrate over final state color configurations. While this improves
the efficiency, it is not possible to handle group processes like W + nj
with a single flow.

= Ndim = 4Nfinal — 4 + 2Ncofor

https://sherpa. hepforge.org/)
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lll: An easy example: ete™ — 3j.

o ‘ <+ g color
. ‘ Target distribution ‘
;ﬁ < ¢ color
‘E-- ‘ “8 color spectator ‘Wlth learning color‘

“<— cos ¥ of decaying fermion with beam

=N
'@W n

- E ( ‘ < cos v of decay
bl =
E!@EESE '« propagator of decaying fermion

NI

— N of decaying fermion with beam
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lll: An easy example: ete™ — 3j.

[~ ‘ + g color

g ‘ Learned distribution ‘
u < ¢ color

;{_- ‘ g color spectator ‘With learning color‘

<— cos19 of decaying fermion with beam

IR cp of decaying fermion with beam

‘ + ¢ of decay

w”mw‘ < propagator of decaying fermion
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lll: An easy example: ete™ — 3j.

< cos ¥ of decaying fermion with beam

;‘H:;
|

( W — <p of decaying fermion with beam ‘Target distribution ‘

—

¢ cos ¥ of decay ‘Without learning coIor‘

<

©
=
[}
©
<%
Q
[%]
t
[}
=
o
=
(e}
(0]
el
%)
=.
>
(5]
o
=
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o
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—c |

< multichannel
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<+ propagator of decaying fermion

=
.]@fﬁ <_ multichannel
w iR

Claudius Krause (Fermilab) } i-flw: Event Generatlon with Normallzlng Flws April 9, 2020 30/ 34




I1l: Comparing ete~ — 3/ with and without
learning color.

with learning color without learning color

10° 10° 10°

10° 10

o = 4879.8 £ 5.3pb

Tnew = 45%

Cut efficiency: 92 %

20 overweight events in 100k

o = 4883.5 £ 8.5pb

Nhew = 25%

Cut efficiency: 92 %

20 overweight events in 100k
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[I1: High Multiplicities are still difficult to learn.

unweighting efficiency LO QCD

(W) / Winax n =0 n=1 n =2 n=3

W' + njets  Sherpa 2.8-1071 3.8-1072 7.5-1073 1.5-1073
i-flow 6.1-107¢ 1.2-1071 1.0-1072 1.8-1073
Gain 22 33 1.4 1.2

W™ 4+ njets Sherpa 2.9.107¢ 4.0-1072 7.7-1073 2.0-1073
i-flow 7.0-107¢ 15-1071 1.1-1072 2.2.1073
Gain 24 33 1.4 1.1

Z + n jets Sherpa 3.1-107¢ 3.6 - 1072 1.5-1072 47-1073
i-flow 3.8-107! 1.0-1071 1.4-1072 2.4-.1073
Gain 1.2 2.9 0.91 0.51
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[Il: There are numerous ways to improve i-flow
in the near future.

@ adjust hyperparameters
@ use a CNN in the CL
@ introduce Conditional Normalizing Flows or Discrete Flows to improve

the multichannel or color sampling
Winkler et al. [1912.00042]; Tran et al. [1905.10347]

@ “learn” the permutations: using 1 X 1 convolutions
Kingma/Dhariwal [1807.03039]

@ improve memory consumption with checkpointing
Chen et al. [1604.06174]
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i-flow: Numerical Integration and Event Generation with
Normalizing Flows

@ | introduced the concepts of numerical integration with
Monte Carlo techniques and importance sampling.

o | discussed “traditional” algorithms like, VEGAS or Foam.
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i-flow: Numerical Integration and Event Generation with
Normalizing Flows

@ | introduced the concepts of numerical integration with
Monte Carlo techniques and importance sampling.

o | discussed “traditional” algorithms like, VEGAS or Foam.

@ | introduced Machine Learning and
discussed two approaches to event
generation: learning g(x) vs. GANs

XA

@ | presented the idea of Normalizing %
Flows.
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i-flow: Numerical Integration and Event Generation with

Normalizing Flows

@ | introduced the concepts of numerical integration with
Monte Carlo techniques and importance sampling.

o | discussed “traditional” algorithms like, VEGAS or Foam.

@ | introduced Machine Learning and
discussed two approaches to event
generation: learning g(x) vs. GANs

o | presented the idea of Normalizing

XA

Flows.

functions. = [2001.05486]

@ | showed results for pp — W + nj with Sherpa.
= [2001.10028]

o | presented i-flow, our python implementation of
Normalizing Flows and showed its performance in test
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