SoLid

The Solid experiment ... a personal story

Nick van Remortel University of Antwerp, Belgium

NIKHEF Colloquium

Jan 10, 2020

Research Foundation Flanders Opening new horizons

How things started (2014)

- Possible to make cheap, modular, plastic neutrino detector?
- Starting from T2K near detector & neutron homeland security detector technology
- With small spatial resolution?
- Suitable for short baseline oscillation physics ?
- In Belgium??
- Exotic physics: sterile neutrinos
- Reactor neutrino production: reference spectra and nuclear safeguards

Baselines in reactor $\overline{v_e}$ **oscillation physics ?**

4

Energies and fluxes ?

Fission of ²³⁵U

In 2011, new computation of v_e spectra T. Mueller at al., Phys Rev C 054615 (2011) + Improved knowledge of IBD cross section Reactor anomaly G. Mention et al. Phys. Rev. D 83, 073006 (2011)

Short baseline oscillation anomalies

- Various 3σ deviations hinting compatible with $\Delta m^2 \simeq 1 eV^2$
- BUT: also mutual tension
- Tension with cosmological predictions
- Resolvable by adding more than 1 extra neutrino species
- New deviations from predictions appearing: Daya Bay/RENO spectral distortion
- Discussion on flux calculations
- Enough to warrant further investigation
- Keep option for new physics open

7

/

Motivation

- Establish or disprove new neutrino eigenstates at $\Delta m^2 \sim O(1 \text{ eV}^2)$, see also reactor- and gallium anomaly
- Resolve discussion on spectral features observed by long baseline reactor expts using common fuels (²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu)

[G. Mention et al., Phys. Lett. B773(2017)307]

Motivation

- Establish or disprove new neutrino eigenstates at $\Delta m^2 \sim O(1 \text{ eV}^2)$, see also reactor- and gallium anomaly
- Resolve discussion on spectral features observed by long baseline reactor expts using common fuels (²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu)
- Several experiments taking data since 2018!
- SoLid approach:
 - $\overline{v_e}$ energy measurement with plastic scintillator: Linear energy response (see eg. ESCAPE 2018)
 - Very small segmentation:
 - Topological event information & Bg reduction
 - 2D Oscillometry in E and L
 - Using highy enriched ²³⁵U reactor fuel

BR2 nuclear site

- Compact research reactor
 - + arnothing 50 cm and height 90 cm
 - Fuel 93.5% 235U
 - Thermal power 50-80 MW
 - Duty cycle 150 days/year (~ 1 month cycles)
 - SoLid at baseline 6-9 m

- At ground level
 - Overburden 10 mwe
 - Muon rate: O(250 Hz)
 - Cosmogenic neutrons
 - Natural radioactivity

NIKHEF Colloquium, 1/17/2020

From security portals to v detector

- Anti-electron-neutrinos detected through inverse beta decay (IBD) in the composite (PVT + ⁶LiF:ZnS) scintillator element $\overline{\nu_e} + p \rightarrow n + e^+$ ($E_{\overline{\nu_e}} > 1.8$ MeV)
- Prompt positron signal
- Delayed neutron signal
 - Neutron captured in ⁶LiF:ZnS close by $n + {}^{6}Li \rightarrow {}^{3}H + \alpha + 4.78$ MeV
 - Capture time O(60 μs)
- R&D program with
 - Materials, geometries, wrappings
 - Reactor measurements: backgrounds, shielding
 - Off-shelf vs custom electronics

N. Van Remortel, University of Antwerpen

SoLid detection principle

- Anti-electron-neutrinos detected through inverse beta decay (IBD) in the composite (PVT + ⁶LiF:ZnS) scintillator element $\overline{v_e} + p \rightarrow n + e^+$ ($E_{\overline{v_e}} > 1.8$ MeV)
- Prompt positron signal
 - Positron energy contained in one/two PVT cubes
 - Allows precise localisation of IBD interaction
 - Provides seed for anti-neutrino energy
- Delayed neutron signal
 - Neutron captured in ⁶LiF:ZnS close by $n + {}^{6}Li \rightarrow {}^{3}H + \alpha + 4.78$ MeV
 - Capture time O(60 µs)
- Both signals
 - Collected by WLS fibers in X and Y directions and transported to MPPC for readout
 - Discrimination (ES NS) based on pulse shape

SoLid phase 1

- SoLid detector cells: Cubes
 - PVT cubes of 5x5x5 cm³ with 2 ⁶LiF:ZnS neutron screens
 - Optically isolated with Tyvek wrapping

SoLid phase 1

• SoLid detector cells: Cubes

- PVT cubes of 5x5x5 cm³ with 2 ⁶LiF:ZnS neutron screens
- Optically isolated with Tyvek wrapping
- Scintillation light extracted via 4 WLS fibers towards 2MPPC's (SiPMs) in either direction

SoLid phase 1

- SoLid detector cells: Cubes
 - PVT cubes of 5x5x5 cm³ with 2 ⁶LiF:ZnS neutron screens
 - Optically isolated with Tyvek wrapping
 - Scintillation light extracted via 4 WLS fibers towards 2MPPC's (SiPMs) in either direction

full plane

- SoLid detection planes
 - Planes of 16x16 cubes = 64 RO channels give 3D topological information
 - Plane readout & trigger:
 - amplification& shaping
 - Digitisation at 40 MHz 2 Tb/s output for full detector
 - Trigger logic in FPGA

SoLid detection Modules

- 5 modules of 10 planes each
- 1.6 ton sensitive mass

SoLid Phase 1

- Container 2.4x2.6x3.8 m³
 - Cooled to 10°C to reduce MPPC dark count rate (1/3)
- Shielding
 - Water enclosure 50cm thick, 3.4 m high, 28ton
 - Polyethylene ceiling 50cm thick, 6ton
 - Cadmium lining
- Automated calibration system for absolute efficiency and energy scale calibration at % level (²⁰⁷Bi, ⁶⁰Co, ¹³⁷Cs, ²²Na, AmBe, ²⁵²Cf)
 - \rightarrow Full G4 simulation

SoLid Phase 1

- Container 2.4x2.6x3.8 m³
 - Cooled to 10°C to reduce MPPC dark count rate (1/3)
- Shielding
 - Water enclosure 50cm thick, 3.4 m high, 28ton
 - Polyethylene ceiling 50cm thick, 6ton
 - Cadmium lining
- Automated calibration system for absolute efficiency and energy scale calibration at % level (²⁰⁷Bi, ⁶⁰Co, ¹³⁷Cs, ²²Na, AmBe, ²⁵²Cf)
 - \rightarrow Full G4 simulation
- Target sensitivity
 - Energy resolution $\frac{\sigma_E}{\sqrt{E (MeV)}} = 14\%$
 - IBD efficiency 30%
 - Signal-to-Background 3:1

 $P_{ee} \sim 1 - \sin^2(2\theta_{14}) \sin(1.267\Delta m_{14}^2 L[m]/E[MeV])$

Quality control: CALIPSO

- Automated scanner with active calibration head ۲ accommodating various neutron, electron/gamma sources:
 - ²⁰⁷Bi, ²²Na, ¹³⁷Cs, ⁶⁰Co, ... •
 - ²³⁵Cf, AmBe
 - 16x16 cell plane in 4 hours
- Employs same readout&DAQ as full detector •

²²Na Compton edge of 1270 keV gamma used for LY measurement

18

JINST 14 (2019) no.02, P02014

SoLid Phase I Timeline

Construction & Integration:

Optical performance

- 99% of channel gains equalized to 1.4% spread
- Linear energy response over wide range
- Will add more sources/energies: Including conversion γ 's from ²⁰⁷Bi
- Exploit muons for real-time monitoring

•

200

400

Reconstructed E / channel [ADC=22PA]

ADC

С С

Entri

4500

♥ 4000

∑ 3500

3000

2500

2000

1500

1000 500

0

Optical performance

- Channel gains equalized to 1.4% spread
- Linear energy response over wide range
- Will add more sources/energies and exploit muons for real-time monitoring
- Pre-integration calibration crosschecked & complemented by in-situ calibration
- Light yield: 96.7 PA/MeV/cube with 20% X-talk 81 PA/MeV $\rightarrow \sigma(E)/\sqrt{E} = 11\%$ at 1 MeV
- Very good consistency between ²²Na and AmBe

Trigger and DAQ

Trigger and DAQ				
Random	Threshold	Neutrino		
Full detector readout at 1 Hz. Non zero-suppressed waveforms for SiPMs monitoring.	Require XY coincidence > 2 MeV. Muon and high electromagnetic event tagger.	PSD algorithm for neutrons. Past time buffer & <i>multiplane</i> readout → Unbiased prompt detection.		

- Neutron trigger implemented in FPGA
 - Based on scintillation signal induced in 6LiZnS: lots of secondary peaks
 - \rightarrow Count number of peaks over treshold in sliding time window
 - Read out long time buffer around NS: [-500 µs, +200µs]

Type	Signal	Taux	Amplitude
ES	Bruit thermique	$100{ m MBq}$	< 10 PA
	γ Réacteur	$100{ m kBq}$	10-100 PA
	Muons	$100{ m Bq}$	> 150 PA
NS	Alpha	$10\mathrm{Bq}$	< 50 PA
	Neutron	$1\mathrm{Bq}$	< 40 PA
ES+NS	IBD	$0.01\mathrm{Bq}$	$50-200 \operatorname{PA}(ES)$

Trigger and DAQ

DAQ efficiency > 90%

Trigger and DAQ

Random

Full detector readout at 1 Hz. Non zero-suppressed waveforms for SiPMs monitoring.

Require XY coincidence > 2 MeV. Muon and high electromagnetic event tagger.

Threshold

Neutrino PSD algorithm for neutrons. Past time buffer & *multiplane* readout →Unbiased prompt detection.

Performance

- Trigger&PID efficiency 79 \pm 3 % (trig dominated)
- Trigger purity ~20%
- DAQ efficiency > 90%
- Physics 'run' = 480 s
- Data rate after trigger (1000x reduction of raw output): 20 MB/s
- Up to 2 TB/day of data, locally stored and distributed to Belgian Tier2 and IN2P3 LYON and Grid-UK
- On Tier2 centres processed by Reconstruction Software (SAFFRON)

Trigger	ZS	Région de lecture		Taux [Hz]	Débit $[MB/s]$
		Espace	Temps $[\mu s]$		
Périodique	Aucune	50 plans	12.8	1.2	3.9~(19%)
Seuil	$1.5\mathrm{PA}$	$1 \ \mathrm{plans}$	$6.4\mu{ m s}$	$2.1\mathrm{k}$	2~(10%)
NS	$0.5\text{-}1.5\mathrm{PA}$	$7 \ \mathrm{plans}$	-500, +200	40	15~(71%)

Neutron reconstruction

- Validated in-situ with AmBe and ²⁵²Cf sources: \rightarrow neutron detection efficiency per cube!
- Average trigger \otimes reconstruction efficiency= $73.9^{+4}_{-3.3}\%$
- Capture efficiency = $71 \pm 2\%$
- Total neutron detection eff= $52\pm5\%$

Event Topologies: Muons

Exploit temporal AND spatial event information:

- Muons: Tracking and dE/dx
- Time Synchronisation Validation
- Monitoring and pressure correction

Event Selection: IBD

Prompt-Delayed Coincidence Candidate - 2017/12/05, 00:07:26

Maximum detectable rate (flux x IBD x acceptance x n captured in Li: 7mHz

Main Backgrounds

• Fast neutrons:

NIKH

- Cosmic muon spallation
- Direct from cosmic shower
- n-recoils mimic prompt ES: very difficut to distinguish, need to tag annihilation gamma's from true prompt ES
- Delayed n-detection identical to IBD

series in n-detection screen

• ${}^{214}Bi \xrightarrow{\beta}{}^{214}Po \xrightarrow{\gamma}{}^{210}Pb$

• BiPo:

- Mitigation:
 - Energy
 - Timing
 - Topology
 - Localisation inside hybrid cell

Attacking the natural radioactivity

- Neutron signals are very correlated with dedicated and pure BiPo control region
- BiPo contaminates our main event sample at energies < 2 MeV
- 10% time variation in measured BiPo indictes airborne Rn , built up in Reactor building: Started flushing container in controlled way as of April 2019.
- How does it behave?
 - Spatially confined \checkmark
 - Low energy \checkmark
 - Longer capture time√
- Event rate: using efficiency derived from sim: 2,2-2.8 Hz vs 0.007 Hz for IBD!

Killing the BiPo

• Waveforms from N-captures on ⁶Li are different than alphas exciting the LiF:ZnS screens

Fast (atmospheric) neutrons

- Disadvantage of neutrino detector with no overburden!
- Passive water shielding removes some fraction (epithermals)
- >2MeV neutrons can induce proton recoils that mimic prompt ES
- Possible to onstruct pure control sample from data
- Flux strongly correlates with atmospheric desnsity (pressure)

Allows to model this bg rate during reactor ON periods

Can one discriminate waveforms induced by p-recoils from prompt ES? Hardly!

Rely on presence of Muon signals in relevant time window Rely on multiplicity: multiple recoils

Defining signal and background regions

- BiPo: extracted from tails: real time monitoring sample in data
- Accidentals: From negative time window
- Atmospheric n: extracted from different control region (not shown) and modeled wrt atm. press.
- Optimize time window for signal extraction
- Complementary approach via BiPonisher discriminant

Sélection	Neutrons	leutrons BiPo	
S_{Signal}	63%(64%)	36%(36%)	1%
S^{BiPo}_{Signal}	5%~(5%)	83%(95%)	12%

Extracting the IBD signal

- Commissioning data: June 2018- Feb 2019
- Physics data: > April 2019
 - 227 Days Reactor off (reference)
 - 281 Days Reactor ON, average Thermal power 54 MW_{th}
 - Initial exposure to O(600) $\overline{v_e}$ IBD interactions/day
 - Blinded until Nov 2019 to perform unbiased analysis
 - Unblinded dataset for analysis setup:
 - June 9 Aug 18 2018:
 - 22 days reactor ON at 60 MW_{th} 34 days reactor OFF

Results shown today will be based on the small setup sample Large data set is currently being analyzed: expect public results by Moriond 2020

Time evolution (before subtraction)

- Day to day fluctuations in rate are significant
- Scaling of BiPo control signal and Accidental rates according to time integration windows
- Atmospheric signal rate is complementary/independent data region and used for modeling
- Reactor On data is corrected for pressure dependence, computed from reactor off data
- IBD signal is extracted from Corrected reactor ON reactor OFF difference

Time evolution (after subtraction)

- Systematic excess of 2s/day observed during rector operations, coresponding to a rate of 1.7 mHz
- With IBD selection efficiency of 24% and a neutron detection efficiency of 52% one expects 145 IBDs/day at a S/N of 1/15
- Total integrated excess amounts to 3313 \pm 558 (stat) events (5.9 σ stat)

Excess characteristics

- Energy spectrum and vertex position behave as expected
- Also other topological distributions look OK
- Gives extra confidence that IBD exces is real

Short Baseline Reactor Experiments*

Experiment	Reactor Power/Fuel	Overburden (mwe)	Detection Material	Segmentation	Optical Readout	Particle ID Capability
DANSS (Russia)	3000 MW LEU fuel	~50	Inhomogeneous PS & Gd sheets	2D, ~5mm	WLS fibers.	Topology only
NEOS (South Korea)	2800 MW LEU fuel	~20	Homogeneous Gd-doped LS	none	Direct double ended PMT	recoil PSD only
nuLat (USA)	40 MW ²³⁵ U fuel	few	Homogeneous ⁶ Li doped PS	Quasi-3D, 5cm, 3-axis Opt. Latt	Direct PMT	Topology, recoil & capture PSD
Neutrino4 (Russia)	100 MW ²³⁵ U fuel	~10	Homogeneous Gd-doped LS	2D, ~10cm	Direct single ended PMT	Topology only
PROSPECT (USA)	85 MW ²³⁵ U fuel	few	Homogeneous ⁶ Li-doped LS	2D, 15cm	Direct double ended PMT	Topology, recoil & capture PSD
SoLid (UK Fr Bel US)	72 MW ²³⁵ U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm multiplex	WLS fibers	topology, capture PSD
Chandler (USA)	72 MW ²³⁵ U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm, 2-axis Opt. Latt	Direct PMT/ WLS Scint.	topology, capture PSD
Stereo (France)	57 MW ²³⁵ U fuel	~15	Homogeneous Gd-doped LS	1D, 25cm	Direct single ended PMT	recoil PSD

2018 model independent indication in favor of SBL oscillations NEOS: $\sim 1.7\sigma$ DANSS-2018: $\sim 2.7\sigma$ Combined: $\sim 3.5\sigma$

[Gariazzo, Giunti, Laveder, Li, arXiv:1801.06467] [Dentler, Hernandez-Cabezudo, Kopp, Machado, Maltoni, Martinez-Soler, Schwetz, arXiv:1803.10661]

Conclusion & outlook

- Solid improved design after evaluating performance of full scale prototype module in 2015-2016
- Constructed a 1.6 ton detector (Phase1) in 2017 and commissioned it in 2018
- Validated performance with calibration & commissioning data
- SoLid is now taking good quality physics data and observes IBD-like events with 28% IBD efficiency and S/B = 1/15
- Additional efforts ongoing to increase the eff and improve the S/B
- More detailed results from a large unblinded dataset prepared for Moriond 2020
- Small upgrade is planned for summer 2020 (phase1.5): Replacing all MPPC's with newer generation (higher Photo efficiency and lower cross talk), will allow to tag annihilation gamma's of prompt signal

SoLid papers

[1] SoLid collaboration, Y. Abreu et al., A novel segmented-scintillator antineutrino detector, JINST 12 (2017) P04024, [1703.01683].

- [2] SoLid collaboration, Y. Abreu et al., Performance of a full scale prototype detector at the BR2 reactor for the SoLid experiment, JINST 13 (2018) P05005, [1802.02884].
- [3] SoLid collaboration, Y. Abreu et al., Optimisation of the scintillation light collection and uniformity for the SoLid experiment, JINST 13 (2018) P09005, [1806.02461].
- [4] S. Kalcheva, G. Van den Branden, V. Kuzminov, E. Koonen, L. Giot and M. Fallot, Reactor Core Simulations for Determination of the Antineutrino Spectrum for the SoLid Experiment at BR2 Reactor, Proceedings M&C 2017 (Jeju, South Korea) April 16–20, 2017.
- [5] L. Arnold et al., The SoLid anti-neutrino detector's readout system, JINST 12 (2017), [1701.02278].
- [6] SoLid collaboration, Y. Abreu et al., Development of a Quality Assurance Process for the SoLid Experiment, JINST 14 (2019) P02014, [1811.05244]