Future perspectives on axion dark matter

Luca Visinelli GRAPPA University of Amsterdam

GRAPPA University of Amsterdam

OUTLINE

I. Recent work

2. Present work

3. Future projects

GRAPPA University of Amsterdam

Recent work by the group

Recent focus on light particles as the dark matter: the QCD axion

Steady growth in the interest on the axion

GRAPPA University of Amsterdam

Early-Universe dynamics of the axion

GRAPPA University of Amsterdam

The parameter space of the QCD axion

$m_A(T_{\rm osc}) \approx 3H(T_{\rm osc})$

Depends on particle physics

Depends on cosmology

GRAPPA University of Amsterdam

One-parameter theory, falsifiable

GRAPPA University of Amsterdam

KLoe magnet for Axion SearcH (KLASH)

Luca Visinelli, 30-10-2019

GRAPPA University of Amsterdam

Multi-messenger axion-GW astrophysics

T.D.P. Edwards et al. 1905.04686

GRAPPA University of Amsterdam

The dark matter axion mass

T.Tenkanen & LV, JCAP 1908, 033 (2019), 1906.11837

GRAPPA University of Amsterdam

Present work

GRAPPA University of Amsterdam

Review on axion models

The landscape of QCD axion models

Maurizio Giannotti^a, Luca Di Luzio^b, Enrico Nardi^{c,*}, Luca Visinelli^d

^aPhysical Sciences, Barry University, 11300 NE 2nd Ave., Miami Shores, FL 33161, USA
^bDipartimento di Fisica, Università di Pisa and INFN, Sezione di Pisa, Italy
^cINFN, Laboratori Nazionali di Frascati, C.P. 13, I-00044 Frascati, Italy
^dGravitation Astroparticle Physics Amsterdam (GRAPPA),
Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics,
University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

GRAPPA University of Amsterdam

Axion miniclusters

Figure 1. Mass fraction $f(\Phi)$ of axions in miniclusters with a given value of Φ .

Kolb&Tkachev1994

collapse at temperature $T_{collapse} = \Phi T_{eq}$ Density of miniclusters $\rho \sim 140(1 + \Phi)\Phi^3 \rho_{eq}$

GRAPPA University of Amsterdam

Axion miniclusters

Mass $M_{\rm MC} \sim 10^{-10} M_{\odot}$ (enclosed at $H_{\rm QCD}^{-1}$) Radius $R_{\rm MC} \sim 1 \,{\rm AU}/\Phi$.

Fairbairn+2017

LV & Redondo 1808.01879

GRAPPA University of Amsterdam

Edwards+, work in progress We are working on the signature of NS- axion MC encounters

GRAPPA University of Amsterdam

Neutron stars "eating up" axion miniclusters

Edwards+, work in progress

We are working on the signature of NS- axion MC encounters

GRAPPA University of Amsterdam

Neutron stars "eating up" axion miniclusters

Edwards+, work in progress We are working on the signature of NS- axion MC encounters

GRAPPA University of Amsterdam

The future? Axions-neutrino connections?

Axions and neutrinos can share properties in some minimal BSM setups

Recent e.g. Peinado+ 1910.02961

Notice that, unlike the Majorana case where one typically has

$$m_{\nu}^{\text{Majorana}} \sim v_{EW}^2 / f_a ,$$
 (7)

for the Dirac case one obtains, from Eq. $(5)^2$:

$$m_{\nu}^{\text{Dirac}} \sim v_{EW} f_a / \Lambda_{UV} \,.$$
 (8)

Type I Dirac See-Saw leads to an *upper* bound to the axion energy scale

GRAPPA University of Amsterdam

Conclusions

- It is an exciting period to work on dark matter compact objects!
- Details require much further efforts. Work in progress...
- Miniclusters and axion stars are possible laboratories!

GRAPPA University of Amsterdam