XENON Program Patrick Decowski

Dark Matter Group

Joran Angevaare IoP - PhD Start Jan'19

Peter Gaemers Nikhef - PhD Start Apr'18

Stefan Brünner Nikhef - Postdoc Start Aug'19

Alvaro Loya Villalpando IoP - PhD Start Nov'19

MSc students:

- Olivier Kesber
- Gijs Leguijt
- Frederick van der Meulen
- Davey Oogjes
- Leonora Verveld
- Lucas de Vries

Dark Matter Group

Joran Angevaare IoP - PhD Start Jan'19

Stefan Brünner Nikhef - Postdoc Start Aug'19

Peter Gaemers Nikhef - PhD Start Apr'18

Alvaro Loya Villalpando IoP - PhD Start Nov'19

MSc students:

- Olivier Kesber
- Gijs Leguijt
- Frederick van der Meulen
- Davey Oogjes
- Leonora Verveld
- Lucas de Vries

Dark Matter Group

Joran Angevaare IoP - PhD Start Jan'19

Stefan Brünner Nikhef - Postdoc Start Aug'19

Peter Gaemers Nikhef - PhD Start Apr'18

Alvaro Loya Villalpando IoP - PhD Start Nov'19

NWO VP Program

MSc students:

- Olivier Kesber
- Gijs Leguijt
- Frederick van der Meulen
- Davey Oogjes
- Leonora Verveld
- Lucas de Vries

27 institutes, 150 scientists

Chicago

UC San Diego

UCSD

Rice

Purdue

Coimbra

LPNHE

Subatech

LAL

Bologna LNGS Torino Napoli

Weizmann

Tokyo

University of Zurich^{®®}

TPC assembly during Fall 2015

From XENON1T to XENONnT

- Reuse most of XENONIT lacksquare
- Larger inner cryostat vessel lacksquare
- New TPC lacksquare
 - Additional ~250 PMTs (494 total)
 - Total of 8.4 tons of LXe
- 10x lower ²²²Rn
- Neutron Veto System
- LXe purification
- Detector being built Start in 2020

Similar efforts: LZ (USA), PandaX-xT (China)

Lowest Background of any DM experiment

Patrick Decowski - Nikhef/UVA

PhD Sander Breur

Lowest Background of any DM experiment

Patrick Decowski - Nikhef/UVA

Upgraded DAQ System

- "Triggerless" DAQ all signals readout continuously
 - Lower thresholds & new event signatures
- Two different gain readouts
 - "Dark Matter": ~10 keV
 - 0v2β: 2.5 MeV

XENONnT Installation Ongoing On schedule for a start in early 2020!

Test of Grids in LXe

Patrick Decowski - Nikhef/UVA

Patrick Decowski - Nikhef/UVA

Patrick Decowski - Nikhef/UVA

Patrick Decowski - Nikhef/UVA

Other XENON1T Analyses Ongoing

arXiv:1907.12771

Physics Channels

• WIMP searches

- Spin-independent
- Spin-dependent and inelastic interactions

• Solar axions, galactic axion-like particles (ALPs), sterile v ER • Alternative dark matter candidates

- Coupling to electrons via axio-electric effect

Supernova neutrinos

- Sensitivity to all neutrino flavors (via CNNS)
- Complementarity to large-scale neutrino detectors

Coherent neutrino-nucleus scattering (CNNS)

• Predicted by SM, only very recently observed!

• Low-energy solar neutrinos: pp, ⁷Be

• Test/improve solar model, test neutrino models

Neutrinoless double beta decay

- Lepton number violating process, effective Majorana mass
- No enrichment in ¹³⁶Xe required

As detector size increases physics channels open up

Patrick Decowski - Nikhef/UVA

NR

NR

ER

NR

ER

Physics Channels

WIMP searches

- Spin-independent
- Spin-dependent and inelastic interactions

• Solar axions, galactic axion-like particles (ALPs), sterile v ER

- Alternative dark matter candidates
- Coupling to electrons via axio-electric effect

Supernova neutrinos

- Sensitivity to all neutrino flavors (via CNNS)
- Complementarity to large-scale neutrino detectors

Coherent neutrino-nucleus scattering (CNNS)

• Predicted by SM, only very recently observed!

• Low-energy solar neutrinos: pp, ⁷Be

• Test/improve solar model, test neutrino models

Neutrinoless double beta decay

- Lepton number violating process, effective Majorana mass
- No enrichment in ¹³⁶Xe required

As detector size increases physics channels open up

Patrick Decowski - Nikhef/UVA

NWO VP P

NR

NR

NR

ER

ER

Even larger Xe detectors

<u>XENONnT</u>

8t of LXe total Reuse a lot of XENONIT infrastructure Start in 2020

Patrick Decowski - Nikhef/UVA

50t of LXe total Global effort **Start in 2025**