Time... And Time again

Some remarks on ORCA time calibration and JGandalf CPU time

- Three stages:
 - 1. PMT time calibration
 - i. Laser calibration (in the lab)
 - ii. K-40 calibration

- Three stages:
 - 1. PMT time calibration
 - i. Laser calibration (in the lab)
 - ii. K-40 calibration
 - Take all unique PMT pairs (= 31nCr2=465)
 - Store time offsets between pair members
 - Fit rate w.r.t. t0, QE and TTS

- Three stages:
 - 1. PMT time calibration
 - i. Laser calibration (in the lab)
 - ii. K-40 calibration
 - Take all unique PMT pairs (= 31nCr2=465)
 - Store time offsets between pair members
 - Fit coincidence rate w.r.t. t0, QE and TTS

- Three stages:
 - 1. PMT time calibration
 - i. Laser calibration (in the lab)
 - ii. K-40 calibration
 - 2. DOM time calibration
 - i. Time residuals between recorded hits and expectation from muon trajectory
 - ii. Nano-beacon

Potential cross-check for different directions of illumination (muon cherenkov \downarrow ; nano-beacon \uparrow)

- Three stages:
 - 1. PMT time calibration
 - i. Laser calibration (in the lab)
 - ii. K-40 calibration
 - 2. DOM time calibration
 - i. Time residuals between recorded hits and expectation from muon trajectory
 - ii. Nano-beacon

Potential cross-check for different directions of illumination (muon cherenkov \downarrow ; nano-beacon \uparrow)

- Three stages:
 - 1. PMT time calibration
 - i. Laser calibration (in the lab)
 - ii. K-40 calibration
 - 2. DOM time calibration
 - i. Time residuals between recorded hits and expectation from muon trajectory
 - ii. Nano-beacon

Potential cross-check for different directions of illumination (muon cherenkov \downarrow ; nano-beacon \uparrow)

- 1. String time calibration
 - i. White Rabbit system (directly after deployment)
 - ii. Grid search over multiple detector calibration settings to maximize muon track fit quality

- Three stages:
 - 1. PMT time calibration
 - i. Laser calibration (in the lab)
 - ii. K-40 calibration
 - 2. DOM time calibration
 - i. Time residuals between recorded hits and expectation from muon trajectory
 - ii. Nano-beacon

Potential cross-check for different directions of illumination (muon cherenkov \downarrow ; nano-beacon \uparrow)

- 1. String time calibration
 - i. White Rabbit system (directly after deployment)
 - ii. Grid search over multiple detector calibration settings to maximize muon track fit quality

Takes a lot of CPU time

(days, depending upon number of evaluated detector settings)

- Ran JGandalf for multiple input parameter settings
 - Significant speed increase when maximum nr. Iterations is set to 1, but...
 - No corresponding increase for considered time window (only x2 speed increase for x10000 time window increase)
 - Speed increase only observed for real data file

CPU time [s]	maxlt = 1	maxlt = 1000	
Real data file (1000 evts)	38	262	
MC file (2785 evts)	14	14	

- Ran JGandalf for multiple input parameter settings
 - Significant speed increase when maximum nr. Iterations is set to 1, but...
 - No corresponding increase for considered time window (only x2 speed increase for x10000 time window increase)
 - Speed increase only observed for real data file

CPU time [s]	maxlt = 1	maxlt = 1000	
Real data file (1000 evts)	38	262	
MC file (2785 evts)	14	14	

• Gprof also suggests fit to be the bottle-neck

Each sample counts as 0.01 seconds.								
	% с	umulative	self		self	total		
	time	seconds	seconds	calls	s/call	s/call	name	
	56.72	5.91	5.91	136012943	0.00	0.00	JT00LS::JSplineFunction <jt00l< td=""></jt00l<>	
	11.04	7.06	1.15	13880352	0.00	0.00	JTOOLS::JPolintFunction <ou, jt<="" td=""></ou,>	
	3.93	7.47	0.41	13880352	0.00	0.00	JTOOLS::JPolintHunction <ou, jt<="" td=""></ou,>	
	2.78	7.76	0.29	323745	0.00	0.00	JTOOLS::JSplineCollection <jtoo< td=""></jtoo<>	
	2.21	7.99	0.23	4	0.06	1.63	JPHYSICS::JPDFTable <jtools::js< td=""></jtools::js<>	
	1.92	8.19	0.20	6940176	0.00	0.00	JTOOLS::JPolintFunction<1u, JT	

KM3NeT group meeting Bouke Jung (<u>bjung@nikhef.nl</u>) Huge number of calls to spline?

- Produced several postfit histograms as a check
 - Number of iterations, Nhit, lambda
 - For all stored fits and for only the best ones

Outlook

- Could not create postfits for JGandalf output with real data
 - Missing header?

7J 10:02:41 bjung@crati:...work > JMuonPostfit -f D44_r6063_gandalf_Nevt1000.root
 -o D44_r6063_postfit_Nevt1000.root -N 1 -A 3 -O N -d 2
FATAL: JMultipleFileScanner<Head>::getHeader(): Missing Header.
[1] 7J 10:02:59 bjung@crati:...work > _____

- Why the difference in fit CPU time between MC and real data?
- Why the many calls to spline?
- Suggestion by Karel:
 - -ln(1.0 exp(-x)) expression in chi2-evaluation of fitting routine
 - Replace by std::expm1 and std::log1p

